These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 34772009)

  • 1. Compressive and Energy Absorption Properties of Pyramidal Lattice Structures by Various Preparation Methods.
    Zhang H; Wang X; Shi Z; Xue J; Han F
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34772009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the Mechanical Properties of a Lattice Structure Composed of Struts with a Tri-Directional Elliptical Cylindrical Section via Selective Laser Melting.
    Xiao X; Xie L; Zhu X; Liu J; Luo Y; Song P; Zhao J; Zhang J; Wang C; Yang S; Wu P; You X; Jiang C
    Materials (Basel); 2023 Aug; 16(15):. PubMed ID: 37570191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis and Design of Lattice Structures for Rapid-Investment Casting.
    Richard CT; Kwok TH
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34500961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical Properties of Lattice Structures with a Central Cube: Experiments and Simulations.
    Guo S; Ma Y; Liu P; Chen Y
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compressive Properties of Functionally Graded Bionic Bamboo Lattice Structures Fabricated by FDM.
    Wen Z; Li M
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Geometrical Parameters on the Mechanical Performance of Bamboo-Inspired Gradient Hollow-Strut Octet Lattice Structure Fabricated by Additive Manufacturing.
    Ge J; Song Y; Chen Z; Zhuo Y; Wei T; Ge C; Cheng Y; Liu M; Jia Q
    Micromachines (Basel); 2024 Apr; 15(5):. PubMed ID: 38793156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compressive Properties and Energy Absorption Characteristics of Co-Continuous Interlocking PDMS/PLA Lattice Composites.
    Wang H; Wang K; Lei J; Fan X
    Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Enhanced Three-Dimensional Auxetic Lattice Structure with Improved Property.
    Xue Y; Gao P; Zhou L; Han F
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32102288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Additively Manufactured Lattice Materials with a Double Level of Gradation: A Comparison of Their Compressive Properties when Fabricated with Material Extrusion and Vat Photopolymerization Processes.
    Rico-Baeza G; Cuan-Urquizo E; Pérez-Soto GI; Alcaraz-Caracheo LA; Camarillo-Gómez KA
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Multi-Cell Hybrid Approach to Elevate the Energy Absorption of Micro-Lattice Materials.
    Xiao L; Xu X; Song W; Hu M
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32937910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing Lightweight 3D-Printable Bioinspired Structures for Enhanced Compression and Energy Absorption Properties.
    Harish A; Alsaleh NA; Ahmadein M; Elfar AA; Djuansjah J; Hassanin H; El-Sayed MA; Essa K
    Polymers (Basel); 2024 Mar; 16(6):. PubMed ID: 38543334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compressive Properties of Al-Si Alloy Lattice Structures with Three Different Unit Cells Fabricated via Laser Powder Bed Fusion.
    Liu X; Sekizawa K; Suzuki A; Takata N; Kobashi M; Yamada T
    Materials (Basel); 2020 Jun; 13(13):. PubMed ID: 32605236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Energy Absorption Behavior of 3D-Printed Polymeric Octet-Truss Lattice Structures of Varying Strut Length and Radius.
    Bolan M; Dean M; Bardelcik A
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36772014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Comparison of Miniature Lattice Structures Produced by Material Extrusion and Vat Photopolymerization Additive Manufacturing.
    Guerra Silva R; Torres MJ; Zahr Viñuela J
    Polymers (Basel); 2021 Jun; 13(13):. PubMed ID: 34208960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical Properties and Energy Absorption Abilities of Diamond TPMS Cylindrical Structures Fabricated by Selective Laser Melting with 316L Stainless Steel.
    Laskowska D; Szatkiewicz T; Bałasz B; Mitura K
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37110031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supportless Lattice Structures for Energy Absorption Fabricated by Fused Deposition Modeling.
    Kumar A; Verma S; Jeng JY
    3D Print Addit Manuf; 2020 Apr; 7(2):85-96. PubMed ID: 36654760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compression Performance and Failure Analysis of 3D-Printed Carbon Fiber/PLA Composite TPMS Lattice Structures.
    Saleh M; Anwar S; Al-Ahmari AM; Alfaify A
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the Design and Compressive Performance of Material Extruded Lattice Structures.
    Rossiter JD; Johnson AA; Bingham GA
    3D Print Addit Manuf; 2020 Feb; 7(1):19-27. PubMed ID: 36654876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experiment Investigation of the Compression Behaviors of Nickel-Coated Hybrid Lattice Structure with Enhanced Mechanical Properties.
    Geng X; Wang M; Hou B
    Micromachines (Basel); 2023 Oct; 14(10):. PubMed ID: 37893396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Mechanical Properties and Energy Absorption of BCC Lattice Structures with Triply Periodic Minimal Surfaces Fabricated by SLM.
    Zhao M; Liu F; Fu G; Zhang DZ; Zhang T; Zhou H
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30501050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.