These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34772065)

  • 1. SUPERFACT: A Model Fuel for Studying the Evolution of the Microstructure of Spent Nuclear Fuel during Storage/Disposal.
    Wiss T; Dieste O; De Bona E; Benedetti A; Rondinella V; Konings R
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34772065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Further evaluations of the toxicity of irradiated advanced heavy water reactor fuels.
    Edwards GW; Priest ND
    Health Phys; 2014 Nov; 107(5):417-34. PubMed ID: 25271932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromium Doped UO
    Kegler P; Klinkenberg M; Bukaemskiy A; Murphy GL; Deissmann G; Brandt F; Bosbach D
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New approaches to reprocessing of oxide nuclear fuel.
    Myasoedov BF; Kulyako YM
    J Radioanal Nucl Chem; 2013; 296(2):1127-1131. PubMed ID: 26224935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation of actinides from spent nuclear fuel: A review.
    Veliscek-Carolan J
    J Hazard Mater; 2016 Nov; 318():266-281. PubMed ID: 27427893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigative study of radiotoxicity of spent nuclear fuel assembly of some commercial nuclear power plants.
    Ojo OP; Sogbadji R; Gyeabour Abrefah R
    Appl Radiat Isot; 2022 Dec; 190():110503. PubMed ID: 36252386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A composite position independent monitor of reactor fuel irradiation using Pu, Cs, and Ba isotope ratios.
    Robel M; Isselhardt B; Ramon E; Hayes A; Gaffney A; Borg L; Lindvall R; Erickson A; Carney K; Battisti T; Conant A; Ade B; Trellue H; Weber C
    J Environ Radioact; 2018 Dec; 195():9-19. PubMed ID: 30237079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmutation of actinides in power reactors.
    Bergelson BR; Gerasimov AS; Tikhomirov GV
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):675-8. PubMed ID: 16604724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hardening neutron spectrum for advanced actinide transmutation experiments in the ATR.
    Chang GS; Ambrosek RG
    Radiat Prot Dosimetry; 2005; 115(1-4):63-8. PubMed ID: 16381683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Actinide and Lanthanide Adsorption onto Hierarchically Porous Carbons Beads: A High Surface Affinity for Pu.
    Luca V; Sizgek DG; Sizgek E; Arrachart G; Rey C; Scales N; Aly Z; Drisko GL
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31623117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmutation of MAs and LLFPs with a lead-cooled fast reactor.
    Sun XY; Han LH; Li XX; Hu BL; Luo W; Liu L
    Sci Rep; 2023 Jan; 13(1):1693. PubMed ID: 36717698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactor-based management of used nuclear fuel: assessment of major options.
    Finck PJ; Wigeland RA; Hill RN
    Health Phys; 2011 Jan; 100(1):46-53. PubMed ID: 21399411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Minor Actinides Transmutation Performance in a Closed Th-U Cycle Based on Molten Chloride Salt Fast Reactor.
    He L; Chen L; Cui Y; Xia S; Zou Y
    Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concept of a fast breeder reactor to transmute MAs and LLFPs.
    Wakabayashi T
    Sci Rep; 2021 Nov; 11(1):22443. PubMed ID: 34789833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insight into the Am-O Phase Equilibria: A Thermodynamic Study Coupling High-Temperature XRD and CALPHAD Modeling.
    Epifano E; Guéneau C; Belin RC; Vauchy R; Lebreton F; Richaud JC; Joly A; Valot C; Martin PM
    Inorg Chem; 2017 Jul; 56(13):7416-7432. PubMed ID: 28621948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relative radiological impact from a reactor accident in the case of emerging nuclear fuels.
    Nicolaou G
    Health Phys; 2009 Aug; 97(2):157-62. PubMed ID: 19590275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of MOX caramel fuel mixed with
    Shaaban I; Albarhoum M
    Appl Radiat Isot; 2017 Jul; 125():188-195. PubMed ID: 28472746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced characterization-informed machine learning framework and quantitative insight to irradiated annular U-10Zr metallic fuels.
    Xu F; Cai L; Salvato D; Dilemma F; Capriotti L; Yao T
    Sci Rep; 2023 Jun; 13(1):10616. PubMed ID: 37391449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity of irradiated advanced heavy water reactor fuels.
    Priest ND; Richardson RB; Edwards GW
    Health Phys; 2013 Feb; 104(2):195-210. PubMed ID: 23274823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pressurized water reactor spent nuclear fuel data library produced with the Serpent2 code.
    Elter Z; BalkestÄhl LP; Branger E; Grape S
    Data Brief; 2020 Dec; 33():106429. PubMed ID: 33134449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.