These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 34772085)
1. Creep-Fatigue Crack Initiation Simulation of a Modified 12% Cr Steel Based on Grain Boundary Cavitation and Plastic Slip Accumulation. Jin X; Wang RZ; Shu Y; Fei JW; Wen JF; Tu ST Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772085 [TBL] [Abstract][Full Text] [Related]
2. The Mechanism of Creep during Crack Propagation of a Superalloy under Fatigue-Creep-Environment Interactions. Wang M; Du J; Deng Q Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33020419 [TBL] [Abstract][Full Text] [Related]
3. The effect of cement creep and cement fatigue damage on the micromechanics of the cement-bone interface. Waanders D; Janssen D; Mann KA; Verdonschot N J Biomech; 2010 Nov; 43(15):3028-34. PubMed ID: 20692663 [TBL] [Abstract][Full Text] [Related]
4. Bending Fatigue Behavior of 316L Stainless Steel up to Very High Cycle Fatigue Regime. Hu Y; Chen Y; He C; Liu Y; Wang Q; Wang C Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33126746 [TBL] [Abstract][Full Text] [Related]
5. The microstructure and creep behavior of cold rolled udimet 188 sheet. Boehlert CJ; Longanbach SC Microsc Microanal; 2011 Jun; 17(3):350-61. PubMed ID: 21205424 [TBL] [Abstract][Full Text] [Related]
6. The Effect of Predeformation on Creep Strength of 9% Cr Steel. Král P; Dvořák J; Blum W; Sklenička V; Horita Z; Takizawa Y; Tang Y; Kunčická L; Kocich R; Kvapilová M; Svobodová M Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33255598 [TBL] [Abstract][Full Text] [Related]
7. A Concise Binomial Model for Nonlinear Creep-Fatigue Crack Growth Behavior at Elevated Temperatures. Mao J; Xiao Z; Hu D; Guo X; Wang R Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057367 [TBL] [Abstract][Full Text] [Related]
8. Study of crack initiation or damage in very high cycle fatigue using ultrasonic fatigue test and microstructure analysis. Chai G; Zhou N Ultrasonics; 2013 Dec; 53(8):1406-11. PubMed ID: 23850182 [TBL] [Abstract][Full Text] [Related]
9. Influence of Mo Segregation at Grain Boundaries on the High Temperature Creep Behavior of Ni-Mo Alloys: An Atomistic Study. Li Q; Zhang J; Tang H; Zhang H; Ye H; Zheng Y Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832367 [TBL] [Abstract][Full Text] [Related]
10. An Approach for Predicting the Low-Cycle-Fatigue Crack Initiation Life of Ultrafine-Grained Aluminum Alloy Considering Inhomogeneous Deformation and Microscale Multiaxial Strain. Sun T; Qin L; Xie Y; Zheng Z; Xie C; Huang Z Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591738 [TBL] [Abstract][Full Text] [Related]
13. Investigation of reorganization of a nanocrystalline grain boundary network during biaxial creep deformation of nanocrystalline Ni using molecular dynamics simulation. Pal S; Meraj M J Mol Model; 2019 Aug; 25(9):282. PubMed ID: 31468178 [TBL] [Abstract][Full Text] [Related]
14. Crossing grain boundaries in metals by slip bands, cleavage and fatigue cracks. Pineau A Philos Trans A Math Phys Eng Sci; 2015 Mar; 373(2038):. PubMed ID: 25713451 [TBL] [Abstract][Full Text] [Related]
15. Effect of Rod-like Structure on Fatigue Life, Short Surface Crack Initiation and Growth Characteristics of Extruded Aluminum Alloy A2024 (Analysis via Modified Linear Elastic Fracture Mechanics). Masuda K; Ishihara S; Shibata H; Oguma N Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947131 [TBL] [Abstract][Full Text] [Related]
16. Precipitation Evolution in the Austenitic Heat-Resistant Steel HR3C upon Creep at 700 °C and 750 °C. Xu L; He Y; Kang Y; Jung JS; Shin K Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806827 [TBL] [Abstract][Full Text] [Related]
17. Shift of Creep Mechanism in Nanocrystalline NiAl Alloy. Sun Z; Liu B; He C; Xie L; Peng Q Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31394760 [TBL] [Abstract][Full Text] [Related]
18. Micromechanical Modelling of the Influence of Strain Ratio on Fatigue Crack Initiation in a Martensitic Steel-A Comparison of Different Fatigue Indicator Parameters. Schäfer BJ; Sonnweber-Ribic P; Ul Hassan H; Hartmaier A Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31487915 [TBL] [Abstract][Full Text] [Related]
19. Microstructural mechanisms of cyclic deformation, fatigue crack initiation and early crack growth. Mughrabi H Philos Trans A Math Phys Eng Sci; 2015 Mar; 373(2038):. PubMed ID: 25713457 [TBL] [Abstract][Full Text] [Related]
20. Molecular Dynamics Simulation on Creep Behavior of Nanocrystalline TiAl Alloy. Zhao F; Zhang J; He C; Zhang Y; Gao X; Xie L Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32872153 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]