These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 34772090)

  • 21. Experimental Study on the Frost Resistance of Basalt Fiber Reinforced Concrete.
    Guo Y; Gao J; Lv J
    Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336334
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of Cyclic Freeze-Thaw on the Steel Bar Reinforced New-To-Old Concrete Interface.
    Luo T; Zhang C; Xu X; Shen Y; Jia H; Sun C
    Molecules; 2020 Mar; 25(5):. PubMed ID: 32164302
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Freeze-Thaw Strength Evolution of Fiber-Reinforced Cement Mortar Based on NMR and Fractal Theory: Considering Porosity and Pore Distribution.
    Zhang C; Liu T; Jiang C; Chen Z; Zhou K; Chen L
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295381
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Research on Performance Deterioration of Internally Cured Pavement Concrete under the Coupling Effect of Salt Freeze-Thaw.
    Xu J; Qin X; Lin Y; Cao C; Liu J; Huang Q
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771777
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Frost Damage in Tight Sandstone: Experimental Evaluation and Interpretation of Damage Mechanisms.
    Ding S; Jia H; Zi F; Dong Y; Yao Y
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33081254
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Macroscopic and Mesoscopic Deterioration Behaviors of Concrete under the Coupling Effect of Chlorine Salt Erosion and Freezing-Thawing Cycle.
    Chen S; Ren J; Li Y; Ren X; Song Y; Sun J
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771996
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic Mechanical Properties and Visco-Elastic Damage Constitutive Model of Freeze-thawed Concrete.
    Li Y; Zhai Y; Liang W; Li Y; Dong Q; Meng F
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32932696
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of Polypropylene Fibers on the Frost Resistance of Natural Sand Concrete and Machine-Made Sand Concrete.
    Tan Y; Long J; Xiong W; Chen X; Zhao B
    Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36236002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Study on the Freeze-Thaw Resistance of Concrete Pavements in Seasonally Frozen Regions.
    Zhao R; Shi C; Zhang R; Wang W; Zhu H; Luo J
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673259
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental Investigation on the Freeze-Thaw Resistance of Steel Fibers Reinforced Rubber Concrete.
    Luo T; Zhang C; Sun C; Zheng X; Ji Y; Yuan X
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32164351
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study on the Damage of Fiber-Reinforced Seawater Sea Sand Concrete by Freezing and Thawing of Seawater.
    Sun C; Wang X; Xin M; He J
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673267
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of Rapid Freeze-Thaw Cycling on the Mechanical Properties of Sustainable Strain-Hardening Cement Composite (2SHCC).
    Jang SJ; Rokugo K; Park WS; Yun HD
    Materials (Basel); 2014 Feb; 7(2):1422-1440. PubMed ID: 28788522
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of Freeze-Thaw Cycles on the Long-Term Performance of Concrete Pavement and Related Improvement Measures: A Review.
    Luo S; Bai T; Guo M; Wei Y; Ma W
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806693
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental and Modeling Analysis of Polypropylene Fiber Reinforced Concrete Subjected to Alkali Attack and Freeze-Thaw Cycling Effect.
    Huang Y; Ji Y; Wang J; Wang Z; Yu B; Zhang S
    Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336271
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental Study of Recycled Concrete under Freeze-Thaw Conditions.
    Jierula A; Wu C; Fu Z; Niyazi H; Li H
    Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203112
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of Varied Waste Ceramic Fillers on the Resistance of Concrete to Freeze-Thaw Cycles.
    Katzer J; Halbiniak J; Langier B; Major M; Major I
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33572975
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Frost Resistance and Microscopic Properties of Recycled Coarse Aggregate Concrete Containing Chemical Admixtures.
    Song Y; Zhou W; Zhang C; Yang C
    Materials (Basel); 2024 Sep; 17(19):. PubMed ID: 39410257
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study on the Frost Resistance of Concrete Modified with Steel Balls Containing Phase Change Material (PCM).
    Yuan X; Wang B; Chen P; Luo T
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443020
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physical and Mechanical Properties of Expanded Polystyrene (EPS) Particle Lightweight Soil under Freeze-Thaw Cycles.
    Mei L; Gu H; He J; Cheng T
    ACS Omega; 2023 Aug; 8(34):31365-31372. PubMed ID: 37663457
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation on mechanical properties deterioration of concrete subjected to freeze-thaw cycles.
    Xie R; Yang J; Xie E
    Sci Rep; 2022 Dec; 12(1):22612. PubMed ID: 36585477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.