BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 34772156)

  • 1. Accessing Structural, Electronic, Transport and Mesoscale Properties of Li-GICs via a Complete DFTB Model with Machine-Learned Repulsion Potential.
    Anniés S; Panosetti C; Voronenko M; Mauth D; Rahe C; Scheurer C
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New insights into the origin of unstable sodium graphite intercalation compounds.
    Lenchuk O; Adelhelm P; Mollenhauer D
    Phys Chem Chem Phys; 2019 Sep; 21(35):19378-19390. PubMed ID: 31455956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid Machine Learning-Enabled Potential Energy Model for Atomistic Simulation of Lithium Intercalation into Graphite from Plating to Overlithiation.
    Yang PY; Chiang YH; Pao CW; Chang CC
    J Chem Theory Comput; 2023 Jul; 19(14):4533-4545. PubMed ID: 37140982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DFTB Modeling of Lithium-Intercalated Graphite with Machine-Learned Repulsive Potential.
    Panosetti C; Anniés SB; Grosu C; Seidlmayer S; Scheurer C
    J Phys Chem A; 2021 Jan; 125(2):691-699. PubMed ID: 33426892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvent-Mediated, Reversible Ternary Graphite Intercalation Compounds for Extreme-Condition Li-Ion Batteries.
    Tao L; Xia D; Sittisomwong P; Zhang H; Lai J; Hwang S; Li T; Ma B; Hu A; Min J; Hou D; Shah SR; Zhao K; Yang G; Zhou H; Li L; Bai P; Shi F; Lin F
    J Am Chem Soc; 2024 Jun; 146(24):16764-74. PubMed ID: 38847794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-Principles Understanding of the Staging Properties of the Graphite Intercalation Compounds towards Dual-Ion Battery Applications.
    Zhou W; Sit PH
    ACS Omega; 2020 Jul; 5(29):18289-18300. PubMed ID: 32743204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)-Ion Batteries.
    Xu J; Dou Y; Wei Z; Ma J; Deng Y; Li Y; Liu H; Dou S
    Adv Sci (Weinh); 2017 Oct; 4(10):1700146. PubMed ID: 29051856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive Study of Lithium Adsorption and Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using First-Principles and Machine Learning Approaches.
    Chaney G; Ibrahim A; Ersan F; Çakır D; Ataca C
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36388-36406. PubMed ID: 34304560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dendrites in Lithium Metal Anodes: Suppression, Regulation, and Elimination.
    Zhang X; Wang A; Liu X; Luo J
    Acc Chem Res; 2019 Nov; 52(11):3223-3232. PubMed ID: 31657541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A disordered rock salt anode for fast-charging lithium-ion batteries.
    Liu H; Zhu Z; Yan Q; Yu S; He X; Chen Y; Zhang R; Ma L; Liu T; Li M; Lin R; Chen Y; Li Y; Xing X; Choi Y; Gao L; Cho HS; An K; Feng J; Kostecki R; Amine K; Wu T; Lu J; Xin HL; Ong SP; Liu P
    Nature; 2020 Sep; 585(7823):63-67. PubMed ID: 32879503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of density functionals for the description of lithium-graphite intercalation compounds.
    Lenchuk O; Adelhelm P; Mollenhauer D
    J Comput Chem; 2019 Oct; 40(27):2400-2412. PubMed ID: 31254474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Expanding Ion-Transport Channels on Anodes for Fast-Charging Lithium-Ion Batteries.
    An J; Zhang H; Qi L; Li G; Li Y
    Angew Chem Int Ed Engl; 2022 Feb; 61(7):e202113313. PubMed ID: 34854185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards hybrid quantum mechanical/molecular mechanical simulations of Li and Na intercalation in graphite - force field development and DFTB parametrisation.
    Purtscher FRS; Hofer TS
    Phys Chem Chem Phys; 2024 Jan; 26(3):1729-1740. PubMed ID: 38165417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interlayer Design of Pillared Graphite by Na-Halide Cluster Intercalation for Anode Materials of Sodium-Ion Batteries.
    Hwang T; Cho M; Cho K
    ACS Omega; 2021 Apr; 6(14):9492-9499. PubMed ID: 33869929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lithiophilic LiC
    Shi P; Li T; Zhang R; Shen X; Cheng XB; Xu R; Huang JQ; Chen XR; Liu H; Zhang Q
    Adv Mater; 2019 Feb; 31(8):e1807131. PubMed ID: 30614585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A DFT investigation of lithium adsorption on graphenes as a potential anode material in lithium-ion batteries.
    De Souza LA; Monteiro de Castro G; Marques LF; Belchior JC
    J Mol Graph Model; 2021 Nov; 108():107998. PubMed ID: 34371459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive Force Field Study of Li/C Systems for Electrical Energy Storage.
    Raju M; Ganesh P; Kent PR; van Duin AC
    J Chem Theory Comput; 2015 May; 11(5):2156-66. PubMed ID: 26574418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using Mixed Salt Electrolytes to Stabilize Silicon Anodes for Lithium-Ion Batteries via in Situ Formation of Li-M-Si Ternaries (M = Mg, Zn, Al, Ca).
    Han B; Liao C; Dogan F; Trask SE; Lapidus SH; Vaughey JT; Key B
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):29780-29790. PubMed ID: 31318201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lithium-ion diffusion mechanisms in the battery anode material Li(1+x)V(1-x)O₂.
    Panchmatia PM; Armstrong AR; Bruce PG; Islam MS
    Phys Chem Chem Phys; 2014 Oct; 16(39):21114-8. PubMed ID: 25008057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.