These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 34772194)

  • 41. Understanding the Effect of Introducing Micro- and Nanoparticle Bismuth Oxide (Bi
    El-Nahal MA; Elsafi M; Sayyed MI; Khandaker MU; Osman H; Elesawy BH; Saleh IH; Abbas MI
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34772013
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Morphological and Gamma-Ray Attenuation Properties of High-Density Polyethylene Containing Bismuth Oxide.
    Almuqrin AH; Elsafi M; Yasmin S; Sayyed MI
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143729
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Trivalent Ions and Their Impacts on Effective Conductivity at 300 K and Radio-Protective Behaviors of Bismo-Borate Glasses: A Comparative Investigation for Al, Y, Nd, Sm, Eu.
    ALMisned G; Tekin HO; Bilal G; Ene A; Kilic G; Issa SAM; Algethami M; Zakaly HMH
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640290
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Coating of polyester fabrics with micro-particles of Bi
    Mehrjardi AZ; Gholamzadeh L; Zafari F
    Appl Radiat Isot; 2023 Feb; 192():110573. PubMed ID: 36473317
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Investigation of natural radionuclides and radiation shielding potential of some commonly used building materials in Northwestern Nigeria.
    Garba NN; Aliyu AS; Rabiu N; Kankara UM; Vatsa AM; Ismaila A; Musa J; Onuh E
    Sci Rep; 2024 Apr; 14(1):9696. PubMed ID: 38678147
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Recycling potential of cathode ray tubes (CRTs) waste glasses based on Bi
    Al-Buriahi MS; Kavas T; Kavaz E; Kurtulus R; Olarinoye IO
    Waste Manag; 2022 Jul; 148():43-49. PubMed ID: 35661537
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of TiO
    Kebaili I; Boukhris I; Sayyed MI; Tonguc B; Al-Buriahi MS
    Ceram Int; 2020 Nov; 46(16):25671-25677. PubMed ID: 32836654
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Study of Prepared Lead-Free Polymer Nanocomposites for X- and Gamma-ray Shielding in Healthcare Applications.
    Alsaab AH; Zeghib S
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177287
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Investigation of shielding properties of impregnated activated carbon for gamma-rays.
    Ickecan D; Turkan MN; Gulbi Cim H
    Appl Radiat Isot; 2021 Jun; 172():109687. PubMed ID: 33740669
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of Monte Carlo simulations and theoretical calculations of nuclear shielding characteristics of various borate glasses including Bi, V, Fe, and Cd.
    Ozdogan H; Kilicoglu O; Akman F; Agar O
    Appl Radiat Isot; 2022 Nov; 189():110454. PubMed ID: 36115291
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Simulation studies for gamma ray shielding properties of Halloysite nanotubes using MCNP-5 code.
    Abu El-Soad AM; Sayyed MI; Mahmoud KA; Şakar E; Kovaleva EG
    Appl Radiat Isot; 2019 Dec; 154():108882. PubMed ID: 31546100
    [TBL] [Abstract][Full Text] [Related]  

  • 52. UPR/Titanium dioxide nanocomposite: Preparation, characterization and application in photon/neutron shielding.
    More CV; Botewad SN; Akman F; Agar O; Pawar PP
    Appl Radiat Isot; 2023 Apr; 194():110688. PubMed ID: 36706516
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative X-ray Shielding Properties of Single-Layered and Multi-Layered Bi
    Thumwong A; Darachai J; Saenboonruang K
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566961
    [TBL] [Abstract][Full Text] [Related]  

  • 54. X- ray absorption parameters studies of P2O5- SnCl2-SnO bioactive glass system.
    Alhuthali AMS; Kumar A; Sayyed MI; Al-Hadeethi Y
    J Xray Sci Technol; 2021; 29(2):373-382. PubMed ID: 33554936
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Impact of micro/nano cadmium oxide on shielding properties of cement-ball clay matrix.
    Gouda MM; Abbas MI; Eid MH; Ziedan MS; Ibrahim MA; Tawfik MM; El-Khatib AM
    Sci Rep; 2023 Oct; 13(1):18224. PubMed ID: 37880284
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hazardous radiation protective glasses for medical and research laboratories.
    Ruamnikhom R; Rajaramakrishna R; Chaiphaksa W; Cheewasukhanont W; Intachai N; Kothan S; Kaewkhao J
    Heliyon; 2023 Sep; 9(9):e19935. PubMed ID: 37809687
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tungsten (VI) oxide reinforced antimony glasses for radiation safety applications: A throughout investigation for determination of radiation shielding properties and transmission factors.
    AlMisned G; Sen Baykal D; Ilik E; Abuzaid M; Issa SAM; Kilic G; Zakaly HMH; Ene A; Tekin HO
    Heliyon; 2023 Jul; 9(7):e17838. PubMed ID: 37456003
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gamma-ray attenuation parameters of HDPE filled with different nano-size and Bulk WO
    Gouda MM; Obeid A; Awad R; Badawi MS
    Appl Radiat Isot; 2023 Jul; 197():110790. PubMed ID: 37037134
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Novel HMO-Glasses with Sb
    ALMisned G; Tekin HO; Issa SAM; Ersundu MÇ; Ersundu AE; Kilic G; Zakaly HMH; Ene A
    Materials (Basel); 2021 Aug; 14(15):. PubMed ID: 34361524
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improving Gamma Ray Shielding Behaviors of Polypropylene Using PbO Nanoparticles: An Experimental Study.
    El-Khatib AM; Shalaby TI; Antar A; Elsafi M
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.