BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 34772225)

  • 1. In Situ Determination of Droplet and Nanoparticle Size Distributions in Spray Flame Synthesis by Wide-Angle Light Scattering (WALS).
    Aßmann S; Münsterjohann B; Huber FJT; Will S
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Fractal Structures by Spray Flame Synthesis Using X-ray Scattering.
    Simmler M; Meier M; Nirschl H
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The gas-phase formation of tin dioxide nanoparticles in single droplet combustion and flame spray pyrolysis.
    Li H; Pokhrel S; Schowalter M; Rosenauer A; Kiefer J; Mädler L
    Combust Flame; 2020 May; 215():389-400. PubMed ID: 32903291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using In Situ Measurements to Experimentally Characterize TiO
    Franzelli B; Scouflaire P; Darabiha N
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uniform nanoparticles by flame-assisted spray pyrolysis (FASP) of low cost precursors.
    Rudin T; Wegner K; Pratsinis SE
    J Nanopart Res; 2011 Jul; 13(7):2715-2725. PubMed ID: 23408113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SpraySyn-A standardized burner configuration for nanoparticle synthesis in spray flames.
    Schneider F; Suleiman S; Menser J; Borukhovich E; Wlokas I; Kempf A; Wiggers H; Schulz C
    Rev Sci Instrum; 2019 Aug; 90(8):085108. PubMed ID: 31472649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of process parameters on the Liquid Flame Spray generated titania nanoparticles.
    Aromaa M; Keskinen H; Mäkelä JM
    Biomol Eng; 2007 Nov; 24(5):543-8. PubMed ID: 17950664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating spray flames for nanoparticle synthesis via tomographic imaging using multi-simultaneous measurements (TIMes) of emission.
    Foo CT; Unterberger A; Martins FJWA; Prenting MM; Schulz C; Mohri K
    Opt Express; 2022 Apr; 30(9):15524-15545. PubMed ID: 35473270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mobile system for a comprehensive online-characterization of nanoparticle aggregates based on wide-angle light scattering and laser-induced incandescence.
    Huber FJ; Altenhoff M; Will S
    Rev Sci Instrum; 2016 May; 87(5):053102. PubMed ID: 27250387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulsed Laser Ablation-Induced Green Synthesis of TiO
    Singh A; Vihinen J; Frankberg E; Hyvärinen L; Honkanen M; Levänen E
    Nanoscale Res Lett; 2016 Dec; 11(1):447. PubMed ID: 27709559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening Precursor-Solvent Combinations for Li
    Meierhofer F; Li H; Gockeln M; Kun R; Grieb T; Rosenauer A; Fritsching U; Kiefer J; Birkenstock J; Mädler L; Pokhrel S
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37760-37777. PubMed ID: 28960057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ light-scattering measurements of morphologically evolving flame-synthesized oxide nanoaggregates.
    Xing Y; Koylu UO; Rosner DE
    Appl Opt; 1999 Apr; 38(12):2686-97. PubMed ID: 18319842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gas phase temperature measurements in the liquid and particle regime of a flame spray pyrolysis process using O2-based pure rotational coherent anti-Stokes Raman scattering.
    Engel SR; Koegler AF; Gao Y; Kilian D; Voigt M; Seeger T; Peukert W; Leipertz A
    Appl Opt; 2012 Sep; 51(25):6063-75. PubMed ID: 22945152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple-scattering effects on infrared scattering measurements used to characterize droplet size and volume fraction distributions in diesel sprays.
    Labs JE; Parker TE
    Appl Opt; 2005 Oct; 44(28):6049-57. PubMed ID: 16231812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Method for measuring the size and velocity of spheres by dual-beam light-scatter interferometry.
    Bachalo WD
    Appl Opt; 1980 Feb; 19(3):363-70. PubMed ID: 20216856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Angular Dependency of Particulate Light Scattering Intensity on Determination of Samples with Bimodal Size Distributions Using Dynamic Light Scattering Methods.
    Kato H; Nakamura A; Kinugasa S
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30201906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precise size distribution measurement of aerosol particles and fog droplets in the open atmosphere.
    Di H; Wang Z; Hua D
    Opt Express; 2019 Jun; 27(12):A890-A908. PubMed ID: 31252863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aggregate morphology of nano-TiO2: role of primary particle size, solution chemistry, and organic matter.
    Chowdhury I; Walker SL; Mylon SE
    Environ Sci Process Impacts; 2013 Jan; 15(1):275-82. PubMed ID: 24592445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size distribution of migrating particles and droplets under gravity in concentrated dispersions measured with static multiple light scattering.
    Sentis MPL; Lemahieu G; Hemsley E; Bouzaid M; Brambilla G
    J Colloid Interface Sci; 2024 Jan; 653(Pt B):1358-1368. PubMed ID: 37801846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of Ambient Pressure on Titania Nanoparticle Formation During Spray-Flame Synthesis.
    Hardt S; Wlokas I; Schulz C; Wiggers H
    J Nanosci Nanotechnol; 2015 Dec; 15(12):9449-56. PubMed ID: 26682365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.