These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 34772332)
1. CRPGCN: predicting circRNA-disease associations using graph convolutional network based on heterogeneous network. Ma Z; Kuang Z; Deng L BMC Bioinformatics; 2021 Nov; 22(1):551. PubMed ID: 34772332 [TBL] [Abstract][Full Text] [Related]
2. Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network. Cao R; He C; Wei P; Su Y; Xia J; Zheng C Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883487 [TBL] [Abstract][Full Text] [Related]
3. GGAECDA: Predicting circRNA-disease associations using graph autoencoder based on graph representation learning. Li G; Lin Y; Luo J; Xiao Q; Liang C Comput Biol Chem; 2022 Aug; 99():107722. PubMed ID: 35810557 [TBL] [Abstract][Full Text] [Related]
4. GCNCDA: A new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm. Wang L; You ZH; Li YM; Zheng K; Huang YA PLoS Comput Biol; 2020 May; 16(5):e1007568. PubMed ID: 32433655 [TBL] [Abstract][Full Text] [Related]
5. Prioritizing CircRNA-Disease Associations With Convolutional Neural Network Based on Multiple Similarity Feature Fusion. Fan C; Lei X; Pan Y Front Genet; 2020; 11():540751. PubMed ID: 33193615 [TBL] [Abstract][Full Text] [Related]
6. RGCNCDA: Relational graph convolutional network improves circRNA-disease association prediction by incorporating microRNAs. Chen Y; Wang Y; Ding Y; Su X; Wang C Comput Biol Med; 2022 Apr; 143():105322. PubMed ID: 35217342 [TBL] [Abstract][Full Text] [Related]
7. GraphCDA: a hybrid graph representation learning framework based on GCN and GAT for predicting disease-associated circRNAs. Dai Q; Liu Z; Wang Z; Duan X; Guo M Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070619 [TBL] [Abstract][Full Text] [Related]
8. MNCLCDA: predicting circRNA-drug sensitivity associations by using mixed neighbourhood information and contrastive learning. Li G; Zeng F; Luo J; Liang C; Xiao Q BMC Med Inform Decis Mak; 2023 Dec; 23(1):291. PubMed ID: 38110886 [TBL] [Abstract][Full Text] [Related]
9. NGCICM: A Novel Deep Learning-Based Method for Predicting circRNA-miRNA Interactions. Ma Z; Kuang Z; Deng L IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):3080-3092. PubMed ID: 37027645 [TBL] [Abstract][Full Text] [Related]
10. MNMDCDA: prediction of circRNA-disease associations by learning mixed neighborhood information from multiple distances. Li Y; Hu XG; Wang L; Li PP; You ZH Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36384071 [TBL] [Abstract][Full Text] [Related]
11. Integrating random walk with restart and k-Nearest Neighbor to identify novel circRNA-disease association. Lei X; Bian C Sci Rep; 2020 Feb; 10(1):1943. PubMed ID: 32029856 [TBL] [Abstract][Full Text] [Related]
13. PCDA-HNMP: Predicting circRNA-disease association using heterogeneous network and meta-path. Chen L; Zhao X Math Biosci Eng; 2023 Nov; 20(12):20553-20575. PubMed ID: 38124565 [TBL] [Abstract][Full Text] [Related]
14. Predicting CircRNA disease associations using novel node classification and link prediction models on Graph Convolutional Networks. Bamunu Mudiyanselage T; Lei X; Senanayake N; Zhang Y; Pan Y Methods; 2022 Feb; 198():32-44. PubMed ID: 34748953 [TBL] [Abstract][Full Text] [Related]
15. Predicting CircRNA-Disease Associations via Feature Convolution Learning With Heterogeneous Graph Attention Network. Peng L; Yang C; Chen Y; Liu W IEEE J Biomed Health Inform; 2023 Jun; 27(6):3072-3082. PubMed ID: 37030839 [TBL] [Abstract][Full Text] [Related]
16. DWNN-RLS: regularized least squares method for predicting circRNA-disease associations. Yan C; Wang J; Wu FX BMC Bioinformatics; 2018 Dec; 19(Suppl 19):520. PubMed ID: 30598076 [TBL] [Abstract][Full Text] [Related]
17. RNMFLP: Predicting circRNA-disease associations based on robust nonnegative matrix factorization and label propagation. Peng L; Yang C; Huang L; Chen X; Fu X; Liu W Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35534179 [TBL] [Abstract][Full Text] [Related]
18. RDGAN: Prediction of circRNA-Disease Associations via Resistance Distance and Graph Attention Network. Lu P; Wang Y IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(5):1445-1457. PubMed ID: 38787672 [TBL] [Abstract][Full Text] [Related]
19. Predicting human disease-associated circRNAs based on locality-constrained linear coding. Ge E; Yang Y; Gang M; Fan C; Zhao Q Genomics; 2020 Mar; 112(2):1335-1342. PubMed ID: 31394170 [TBL] [Abstract][Full Text] [Related]
20. DeepWalk-aware graph attention networks with CNN for circRNA-drug sensitivity association identification. Li G; Li Y; Liang C; Luo J Brief Funct Genomics; 2024 Jul; 23(4):418-428. PubMed ID: 38061910 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]