BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 34772471)

  • 1. DrugEx v2: de novo design of drug molecules by Pareto-based multi-objective reinforcement learning in polypharmacology.
    Liu X; Ye K; van Vlijmen HWT; Emmerich MTM; IJzerman AP; van Westen GJP
    J Cheminform; 2021 Nov; 13(1):85. PubMed ID: 34772471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DrugEx v3: scaffold-constrained drug design with graph transformer-based reinforcement learning.
    Liu X; Ye K; van Vlijmen HWT; IJzerman AP; van Westen GJP
    J Cheminform; 2023 Feb; 15(1):24. PubMed ID: 36803659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An exploration strategy improves the diversity of de novo ligands using deep reinforcement learning: a case for the adenosine A
    Liu X; Ye K; van Vlijmen HWT; IJzerman AP; van Westen GJP
    J Cheminform; 2019 May; 11(1):35. PubMed ID: 31127405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FSM-DDTR: End-to-end feedback strategy for multi-objective De Novo drug design using transformers.
    Monteiro NRC; Pereira TO; Machado ACD; Oliveira JL; Abbasi M; Arrais JP
    Comput Biol Med; 2023 Sep; 164():107285. PubMed ID: 37557054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Faster and more diverse de novo molecular optimization with double-loop reinforcement learning using augmented SMILES.
    Bjerrum EJ; Margreitter C; Blaschke T; Kolarova S; de Castro RL
    J Comput Aided Mol Des; 2023 Aug; 37(8):373-394. PubMed ID: 37329395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity oriented Deep Reinforcement Learning for targeted molecule generation.
    Pereira T; Abbasi M; Ribeiro B; Arrais JP
    J Cheminform; 2021 Mar; 13(1):21. PubMed ID: 33750461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magicmol: a light-weighted pipeline for drug-like molecule evolution and quick chemical space exploration.
    Chen L; Shen Q; Lou J
    BMC Bioinformatics; 2023 Apr; 24(1):173. PubMed ID: 37101113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DrugEx: Deep Learning Models and Tools for Exploration of Drug-Like Chemical Space.
    Šícho M; Luukkonen S; van den Maagdenberg HW; Schoenmaker L; Béquignon OJM; van Westen GJP
    J Chem Inf Model; 2023 Jun; 63(12):3629-3636. PubMed ID: 37272707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Status and Prospects of Research on Deep Learning-based De Novo Generation of Drug Molecules.
    Shi H; Wang Z; Zhou L; Xu Z; Xie L; Kong R; Chang S
    Curr Comput Aided Drug Des; 2024 Feb; ():. PubMed ID: 38321907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De novo drug design based on Stack-RNN with multi-objective reward-weighted sum and reinforcement learning.
    Hu P; Zou J; Yu J; Shi S
    J Mol Model; 2023 Mar; 29(4):121. PubMed ID: 36991180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing optimized drug candidates with Generative Adversarial Network.
    Abbasi M; Santos BP; Pereira TC; Sofia R; Monteiro NRC; Simões CJV; Brito RMM; Ribeiro B; Oliveira JL; Arrais JP
    J Cheminform; 2022 Jun; 14(1):40. PubMed ID: 35754029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer-aided multi-objective optimization in small molecule discovery.
    Fromer JC; Coley CW
    Patterns (N Y); 2023 Feb; 4(2):100678. PubMed ID: 36873904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Memory-assisted reinforcement learning for diverse molecular de novo design.
    Blaschke T; Engkvist O; Bajorath J; Chen H
    J Cheminform; 2020 Nov; 12(1):68. PubMed ID: 33292554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep reinforcement learning for de novo drug design.
    Popova M; Isayev O; Tropsha A
    Sci Adv; 2018 Jul; 4(7):eaap7885. PubMed ID: 30050984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving drug discovery with a hybrid deep generative model using reinforcement learning trained on a Bayesian docking approximation.
    Xiong Y; Wang Y; Wang Y; Li C; Yusong P; Wu J; Wang Y; Gu L; Butch CJ
    J Comput Aided Mol Des; 2023 Nov; 37(11):507-517. PubMed ID: 37550462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo drug design as GPT language modeling: large chemistry models with supervised and reinforcement learning.
    Ye G
    J Comput Aided Mol Des; 2024 Apr; 38(1):20. PubMed ID: 38647700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo generation of dual-target ligands using adversarial training and reinforcement learning.
    Lu F; Li M; Min X; Li C; Zeng X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34410338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adversarial Threshold Neural Computer for Molecular de Novo Design.
    Putin E; Asadulaev A; Vanhaelen Q; Ivanenkov Y; Aladinskaya AV; Aliper A; Zhavoronkov A
    Mol Pharm; 2018 Oct; 15(10):4386-4397. PubMed ID: 29569445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De Novo Molecule Design by Translating from Reduced Graphs to SMILES.
    Pogány P; Arad N; Genway S; Pickett SD
    J Chem Inf Model; 2019 Mar; 59(3):1136-1146. PubMed ID: 30525594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Pareto Algorithm for Efficient De Novo Design of Multi-functional Molecules.
    Daeyaert F; Deem MW
    Mol Inform; 2017 Jan; 36(1-2):. PubMed ID: 28124835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.