These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates? Forman-Kay JD; Ditlev JA; Nosella ML; Lee HO RNA; 2022 Jan; 28(1):36-47. PubMed ID: 34772786 [TBL] [Abstract][Full Text] [Related]
3. RNA in formation and regulation of transcriptional condensates. Sharp PA; Chakraborty AK; Henninger JE; Young RA RNA; 2022 Jan; 28(1):52-57. PubMed ID: 34772787 [TBL] [Abstract][Full Text] [Related]
7. Weak multivalent biomolecular interactions: a strength versus numbers tug of war with implications for phase partitioning. Darzacq X; Tjian R RNA; 2022 Jan; 28(1):48-51. PubMed ID: 34772790 [TBL] [Abstract][Full Text] [Related]
8. Who's In and Who's Out-Compositional Control of Biomolecular Condensates. Ditlev JA; Case LB; Rosen MK J Mol Biol; 2018 Nov; 430(23):4666-4684. PubMed ID: 30099028 [TBL] [Abstract][Full Text] [Related]
9. Are stress granules the RNA analogs of misfolded protein aggregates? Ripin N; Parker R RNA; 2022 Jan; 28(1):67-75. PubMed ID: 34670846 [TBL] [Abstract][Full Text] [Related]
10. RNA and condensates: Disease implications and therapeutic opportunities. Han TW; Portz B; Young RA; Boija A; Klein IA Cell Chem Biol; 2024 Sep; 31(9):1593-1609. PubMed ID: 39303698 [TBL] [Abstract][Full Text] [Related]
11. Phase separation in RNA biology. Lin Y; Fang X J Genet Genomics; 2021 Oct; 48(10):872-880. PubMed ID: 34371110 [TBL] [Abstract][Full Text] [Related]
12. Conformational Freedom and Topological Confinement of Proteins in Biomolecular Condensates. Scholl D; Deniz AA J Mol Biol; 2022 Jan; 434(1):167348. PubMed ID: 34767801 [TBL] [Abstract][Full Text] [Related]
13. The Interplay Between Disordered Regions in RNAs and Proteins Modulates Interactions Within Stress Granules and Processing Bodies. Vandelli A; Cid Samper F; Torrent Burgas M; Sanchez de Groot N; Tartaglia GG J Mol Biol; 2022 Jan; 434(1):167159. PubMed ID: 34274326 [TBL] [Abstract][Full Text] [Related]
14. A working model for condensate RNA-binding proteins as matchmakers for protein complex assembly. Chen X; Mayr C RNA; 2022 Jan; 28(1):76-87. PubMed ID: 34706978 [TBL] [Abstract][Full Text] [Related]
15. RNA contributions to the form and function of biomolecular condensates. Roden C; Gladfelter AS Nat Rev Mol Cell Biol; 2021 Mar; 22(3):183-195. PubMed ID: 32632317 [TBL] [Abstract][Full Text] [Related]
16. Rational Tuning of the Concentration-independent Enrichment of Prion-like Domains in Stress Granules. Baer MH; Cascarina SM; Paul KR; Ross ED J Mol Biol; 2024 Sep; 436(18):168703. PubMed ID: 39004265 [TBL] [Abstract][Full Text] [Related]
17. Higher-order organization of biomolecular condensates. Fare CM; Villani A; Drake LE; Shorter J Open Biol; 2021 Jun; 11(6):210137. PubMed ID: 34129784 [TBL] [Abstract][Full Text] [Related]
18. Integrated multi-omics reveals common properties underlying stress granule and P-body formation. Kershaw CJ; Nelson MG; Lui J; Bates CP; Jennings MD; Hubbard SJ; Ashe MP; Grant CM RNA Biol; 2021 Nov; 18(sup2):655-673. PubMed ID: 34672913 [TBL] [Abstract][Full Text] [Related]
19. RNA in biological condensates. Cech TR RNA; 2022 Jan; 28(1):1-2. PubMed ID: 34903621 [No Abstract] [Full Text] [Related]
20. Design considerations for analyzing protein translation regulation by condensates. Roden CA; Gladfelter AS RNA; 2022 Jan; 28(1):88-96. PubMed ID: 34670845 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]