These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. WRN rescues replication forks compromised by a BRCA2 deficiency: Predictions for how inhibition of a helicase that suppresses premature aging tilts the balance to fork demise and chromosomal instability in cancer. Datta A; Brosh RM Bioessays; 2022 Aug; 44(8):e2200057. PubMed ID: 35751457 [TBL] [Abstract][Full Text] [Related]
3. Cockayne syndrome group B protein regulates fork restart, fork progression and MRE11-dependent fork degradation in BRCA1/2-deficient cells. Batenburg NL; Mersaoui SY; Walker JR; Coulombe Y; Hammond-Martel I; Wurtele H; Masson JY; Zhu XD Nucleic Acids Res; 2021 Dec; 49(22):12836-12854. PubMed ID: 34871413 [TBL] [Abstract][Full Text] [Related]
4. Replication fork stability confers chemoresistance in BRCA-deficient cells. Ray Chaudhuri A; Callen E; Ding X; Gogola E; Duarte AA; Lee JE; Wong N; Lafarga V; Calvo JA; Panzarino NJ; John S; Day A; Crespo AV; Shen B; Starnes LM; de Ruiter JR; Daniel JA; Konstantinopoulos PA; Cortez D; Cantor SB; Fernandez-Capetillo O; Ge K; Jonkers J; Rottenberg S; Sharan SK; Nussenzweig A Nature; 2016 Jul; 535(7612):382-7. PubMed ID: 27443740 [TBL] [Abstract][Full Text] [Related]
5. PCAF-Mediated Histone Acetylation Promotes Replication Fork Degradation by MRE11 and EXO1 in BRCA-Deficient Cells. Kim JJ; Lee SY; Choi JH; Woo HG; Xhemalce B; Miller KM Mol Cell; 2020 Oct; 80(2):327-344.e8. PubMed ID: 32966758 [TBL] [Abstract][Full Text] [Related]
6. Abro1 maintains genome stability and limits replication stress by protecting replication fork stability. Xu S; Wu X; Wu L; Castillo A; Liu J; Atkinson E; Paul A; Su D; Schlacher K; Komatsu Y; You MJ; Wang B Genes Dev; 2017 Jul; 31(14):1469-1482. PubMed ID: 28860160 [TBL] [Abstract][Full Text] [Related]
7. MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells. Lemaçon D; Jackson J; Quinet A; Brickner JR; Li S; Yazinski S; You Z; Ira G; Zou L; Mosammaparast N; Vindigni A Nat Commun; 2017 Oct; 8(1):860. PubMed ID: 29038425 [TBL] [Abstract][Full Text] [Related]
8. EZH2 promotes degradation of stalled replication forks by recruiting MUS81 through histone H3 trimethylation. Rondinelli B; Gogola E; Yücel H; Duarte AA; van de Ven M; van der Sluijs R; Konstantinopoulos PA; Jonkers J; Ceccaldi R; Rottenberg S; D'Andrea AD Nat Cell Biol; 2017 Nov; 19(11):1371-1378. PubMed ID: 29035360 [TBL] [Abstract][Full Text] [Related]
9. E3 ligase RFWD3 is a novel modulator of stalled fork stability in BRCA2-deficient cells. Duan H; Mansour S; Reed R; Gillis MK; Parent B; Liu B; Sztupinszki Z; Birkbak N; Szallasi Z; Elia AEH; Garber JE; Pathania S J Cell Biol; 2020 Jun; 219(6):. PubMed ID: 32391871 [TBL] [Abstract][Full Text] [Related]
10. Class I Histone Deacetylase HDAC1 and WRN RECQ Helicase Contribute Additively to Protect Replication Forks upon Hydroxyurea-induced Arrest. Kehrli K; Phelps M; Lazarchuk P; Chen E; Monnat R; Sidorova JM J Biol Chem; 2016 Nov; 291(47):24487-24503. PubMed ID: 27672210 [TBL] [Abstract][Full Text] [Related]
11. Smarcal1-Mediated Fork Reversal Triggers Mre11-Dependent Degradation of Nascent DNA in the Absence of Brca2 and Stable Rad51 Nucleofilaments. Kolinjivadi AM; Sannino V; De Antoni A; Zadorozhny K; Kilkenny M; Técher H; Baldi G; Shen R; Ciccia A; Pellegrini L; Krejci L; Costanzo V Mol Cell; 2017 Sep; 67(5):867-881.e7. PubMed ID: 28757209 [TBL] [Abstract][Full Text] [Related]
12. Mre11-dependent degradation of stalled DNA replication forks is prevented by BRCA2 and PARP1. Ying S; Hamdy FC; Helleday T Cancer Res; 2012 Jun; 72(11):2814-21. PubMed ID: 22447567 [TBL] [Abstract][Full Text] [Related]
13. CSB and SMARCAL1 compete for RPA32 at stalled forks and differentially control the fate of stalled forks in BRCA2-deficient cells. Batenburg NL; Sowa DJ; Walker JR; Andres SN; Zhu XD Nucleic Acids Res; 2024 May; 52(9):5067-5087. PubMed ID: 38416570 [TBL] [Abstract][Full Text] [Related]
14. Restoration of Replication Fork Stability in BRCA1- and BRCA2-Deficient Cells by Inactivation of SNF2-Family Fork Remodelers. Taglialatela A; Alvarez S; Leuzzi G; Sannino V; Ranjha L; Huang JW; Madubata C; Anand R; Levy B; Rabadan R; Cejka P; Costanzo V; Ciccia A Mol Cell; 2017 Oct; 68(2):414-430.e8. PubMed ID: 29053959 [TBL] [Abstract][Full Text] [Related]
15. DNA2 drives processing and restart of reversed replication forks in human cells. Thangavel S; Berti M; Levikova M; Pinto C; Gomathinayagam S; Vujanovic M; Zellweger R; Moore H; Lee EH; Hendrickson EA; Cejka P; Stewart S; Lopes M; Vindigni A J Cell Biol; 2015 Mar; 208(5):545-62. PubMed ID: 25733713 [TBL] [Abstract][Full Text] [Related]
16. Human CST complex protects stalled replication forks by directly blocking MRE11 degradation of nascent-strand DNA. Lyu X; Lei KH; Biak Sang P; Shiva O; Chastain M; Chi P; Chai W EMBO J; 2021 Jan; 40(2):e103654. PubMed ID: 33210317 [TBL] [Abstract][Full Text] [Related]
18. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks. Kim TM; Son MY; Dodds S; Hu L; Hasty P Mutat Res; 2014; 766-767():66-72. PubMed ID: 25847274 [TBL] [Abstract][Full Text] [Related]
19. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Schlacher K; Christ N; Siaud N; Egashira A; Wu H; Jasin M Cell; 2011 May; 145(4):529-42. PubMed ID: 21565612 [TBL] [Abstract][Full Text] [Related]
20. Synthetic viability by BRCA2 and PARP1/ARTD1 deficiencies. Ding X; Ray Chaudhuri A; Callen E; Pang Y; Biswas K; Klarmann KD; Martin BK; Burkett S; Cleveland L; Stauffer S; Sullivan T; Dewan A; Marks H; Tubbs AT; Wong N; Buehler E; Akagi K; Martin SE; Keller JR; Nussenzweig A; Sharan SK Nat Commun; 2016 Aug; 7():12425. PubMed ID: 27498558 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]