BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 34773154)

  • 1. A versatile toolbox for CRISPR-based genome engineering in Pichia pastoris.
    Liao X; Li L; Jameel A; Xing XH; Zhang C
    Appl Microbiol Biotechnol; 2021 Dec; 105(24):9211-9218. PubMed ID: 34773154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High efficiency CRISPR/Cas9 genome editing system with an eliminable episomal sgRNA plasmid in Pichia pastoris.
    Yang Y; Liu G; Chen X; Liu M; Zhan C; Liu X; Bai Z
    Enzyme Microb Technol; 2020 Aug; 138():109556. PubMed ID: 32527526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of a series of episomal plasmids and their application in the development of an efficient CRISPR/Cas9 system in Pichia pastoris.
    Gu Y; Gao J; Cao M; Dong C; Lian J; Huang L; Cai J; Xu Z
    World J Microbiol Biotechnol; 2019 May; 35(6):79. PubMed ID: 31134410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Single Cas9-VPR Nuclease for Simultaneous Gene Activation, Repression, and Editing in
    Dong C; Jiang L; Xu S; Huang L; Cai J; Lian J; Xu Z
    ACS Synth Biol; 2020 Sep; 9(9):2252-2257. PubMed ID: 32841560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris.
    Weninger A; Hatzl AM; Schmid C; Vogl T; Glieder A
    J Biotechnol; 2016 Oct; 235():139-49. PubMed ID: 27015975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris.
    Cai P; Duan X; Wu X; Gao L; Ye M; Zhou YJ
    Nucleic Acids Res; 2021 Jul; 49(13):7791-7805. PubMed ID: 34197615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel and Efficient Genome Editing Tool Assisted by CRISPR-Cas12a/Cpf1 for
    Zhang X; Gu S; Zheng X; Peng S; Li Y; Lin Y; Liang S
    ACS Synth Biol; 2021 Nov; 10(11):2927-2937. PubMed ID: 34644057
    [No Abstract]   [Full Text] [Related]  

  • 8. CRISPR-Cas9-mediated genomic multiloci integration in Pichia pastoris.
    Liu Q; Shi X; Song L; Liu H; Zhou X; Wang Q; Zhang Y; Cai M
    Microb Cell Fact; 2019 Aug; 18(1):144. PubMed ID: 31434578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted editing of transcriptional activator MXR1 on the Pichia pastoris genome using CRISPR/Cas9 technology.
    Hou C; Yang Y; Xing Y; Zhan C; Liu G; Liu X; Liu C; Zhan J; Xu D; Bai Z
    Yeast; 2020 Apr; 37(4):305-312. PubMed ID: 32050051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplex Marker-Less Genome Integration in Pichia pastoris Using CRISPR/Cas9.
    Gao J; Cheng J; Lian J
    Methods Mol Biol; 2024; 2760():157-167. PubMed ID: 38468088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GoldenPiCS: a Golden Gate-derived modular cloning system for applied synthetic biology in the yeast Pichia pastoris.
    Prielhofer R; Barrero JJ; Steuer S; Gassler T; Zahrl R; Baumann K; Sauer M; Mattanovich D; Gasser B; Marx H
    BMC Syst Biol; 2017 Dec; 11(1):123. PubMed ID: 29221460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanding the CRISPR/Cas9 toolkit for Pichia pastoris with efficient donor integration and alternative resistance markers.
    Weninger A; Fischer JE; Raschmanová H; Kniely C; Vogl T; Glieder A
    J Cell Biochem; 2018 Apr; 119(4):3183-3198. PubMed ID: 29091307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic Biology Toolkit for Marker-Less Integration of Multigene Pathways into
    Gao J; Xu J; Zuo Y; Ye C; Jiang L; Feng L; Huang L; Xu Z; Lian J
    ACS Synth Biol; 2022 Feb; 11(2):623-633. PubMed ID: 35080853
    [No Abstract]   [Full Text] [Related]  

  • 14. CRISPR/Cas9-Mediated Homology-Directed Genome Editing in Pichia pastoris.
    Gassler T; Heistinger L; Mattanovich D; Gasser B; Prielhofer R
    Methods Mol Biol; 2019; 1923():211-225. PubMed ID: 30737742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a gRNA Expression and Processing Platform for Efficient CRISPR-Cas9-Based Gene Editing and Gene Silencing in Candida tropicalis.
    Li Y; Zhang L; Yang H; Xia Y; Liu L; Chen X; Shen W
    Microbiol Spectr; 2022 Jun; 10(3):e0005922. PubMed ID: 35543560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a CRISPR/Cas9-Based Tool for Gene Deletion in
    Tran VG; Cao M; Fatma Z; Song X; Zhao H
    mSphere; 2019 Jun; 4(3):. PubMed ID: 31243078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of Pichia pastoris.
    Peña DA; Gasser B; Zanghellini J; Steiger MG; Mattanovich D
    Metab Eng; 2018 Nov; 50():2-15. PubMed ID: 29704654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic Engineering of
    Zhang X; Chen S; Lin Y; Li W; Wang D; Ruan S; Yang Y; Liang S
    ACS Synth Biol; 2023 Oct; 12(10):2961-2972. PubMed ID: 37782893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine-Tuning of Transcription in
    Baumschabl M; Prielhofer R; Mattanovich D; Steiger MG
    ACS Synth Biol; 2020 Dec; 9(12):3202-3209. PubMed ID: 33180466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.