BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 34773156)

  • 1. An efficient strategy for predicting river dissolved oxygen concentration: application of deep recurrent neural network model.
    Moghadam SV; Sharafati A; Feizi H; Marjaie SMS; Asadollah SBHS; Motta D
    Environ Monit Assess; 2021 Nov; 193(12):798. PubMed ID: 34773156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of dissolved oxygen concentration in hypoxic river systems using support vector machine: a case study of Wen-Rui Tang River, China.
    Ji X; Shang X; Dahlgren RA; Zhang M
    Environ Sci Pollut Res Int; 2017 Jul; 24(19):16062-16076. PubMed ID: 28537025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance assessment of artificial neural networks and support vector regression models for stream flow predictions.
    Ateeq-Ur-Rauf ; Ghumman AR; Ahmad S; Hashmi HN
    Environ Monit Assess; 2018 Nov; 190(12):704. PubMed ID: 30406854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting river dissolved oxygen time series based on stand-alone models and hybrid wavelet-based models.
    Xu C; Chen X; Zhang L
    J Environ Manage; 2021 Oct; 295():113085. PubMed ID: 34147993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling of dissolved oxygen content using artificial neural networks: Danube River, North Serbia, case study.
    Antanasijević D; Pocajt V; Povrenović D; Perić-Grujić A; Ristić M
    Environ Sci Pollut Res Int; 2013 Dec; 20(12):9006-13. PubMed ID: 23764983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of deep learning approaches to predict monthly stream flows.
    Dalkilic HY; Kumar D; Samui P; Dixon B; Yesilyurt SN; Katipoğlu OM
    Environ Monit Assess; 2023 May; 195(6):705. PubMed ID: 37212953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of artificial intelligence methods for monsoonal river classification in Selangor river basin, Malaysia.
    Wong YJ; Shimizu Y; Kamiya A; Maneechot L; Bharambe KP; Fong CS; Nik Sulaiman NM
    Environ Monit Assess; 2021 Jun; 193(7):438. PubMed ID: 34159431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of the five-day biochemical oxygen demand and chemical oxygen demand in natural streams using machine learning methods.
    Najafzadeh M; Ghaemi A
    Environ Monit Assess; 2019 May; 191(6):380. PubMed ID: 31104155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland.
    Deo RC; Şahin M
    Environ Monit Assess; 2016 Feb; 188(2):90. PubMed ID: 26780409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of machine learning in river water quality management: a review.
    Cojbasic S; Dmitrasinovic S; Kostic M; Turk Sekulic M; Radonic J; Dodig A; Stojkovic M
    Water Sci Technol; 2023 Nov; 88(9):2297-2308. PubMed ID: 37966184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the biochemical oxygen demand using neural networks and ensemble tree approaches in South Korea.
    Kim S; Alizamir M; Zounemat-Kermani M; Kisi O; Singh VP
    J Environ Manage; 2020 Sep; 270():110834. PubMed ID: 32507742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extreme learning machines: a new approach for modeling dissolved oxygen (DO) concentration with and without water quality variables as predictors.
    Heddam S; Kisi O
    Environ Sci Pollut Res Int; 2017 Jul; 24(20):16702-16724. PubMed ID: 28560629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of daily dissolved oxygen concentration for river water quality using conventional regression analysis, multivariate adaptive regression splines, and TreeNet techniques.
    Nacar S; Mete B; Bayram A
    Environ Monit Assess; 2020 Nov; 192(12):752. PubMed ID: 33159587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating the incubated river water quality indicator based on machine learning and deep learning paradigms: BOD5 Prediction.
    Kim S; Alizamir M; Seo Y; Heddam S; Chung IM; Kim YO; Kisi O; Singh VP
    Math Biosci Eng; 2022 Sep; 19(12):12744-12773. PubMed ID: 36654020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial neural network modeling of dissolved oxygen in the Heihe River, Northwestern China.
    Wen X; Fang J; Diao M; Zhang C
    Environ Monit Assess; 2013 May; 185(5):4361-71. PubMed ID: 23001527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalized regression neural network-based approach for modelling hourly dissolved oxygen concentration in the Upper Klamath River, Oregon, USA.
    Heddam S
    Environ Technol; 2014 Aug; 35(13-16):1650-7. PubMed ID: 24956755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring.
    Najah A; El-Shafie A; Karim OA; El-Shafie AH
    Environ Sci Pollut Res Int; 2014 Feb; 21(3):1658-1670. PubMed ID: 23949111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS)-based approach: case study of Klamath River at Miller Island Boat Ramp, OR, USA.
    Heddam S
    Environ Sci Pollut Res Int; 2014; 21(15):9212-27. PubMed ID: 24705953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of ANN and SVM for prediction nutrients in rivers.
    Stamenković LJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2021; 56(8):867-873. PubMed ID: 34061713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Support vector machine-an alternative to artificial neuron network for water quality forecasting in an agricultural nonpoint source polluted river?
    Liu M; Lu J
    Environ Sci Pollut Res Int; 2014 Sep; 21(18):11036-53. PubMed ID: 24894753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.