These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 34773436)

  • 1. Isolating the sources of pipeline-variability in group-level task-fMRI results.
    Bowring A; Nichols TE; Maumet C
    Hum Brain Mapp; 2022 Feb; 43(3):1112-1128. PubMed ID: 34773436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the impact of analysis software on task fMRI results.
    Bowring A; Maumet C; Nichols TE
    Hum Brain Mapp; 2019 Aug; 40(11):3362-3384. PubMed ID: 31050106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Java-based fMRI processing pipeline evaluation system for assessment of univariate general linear model and multivariate canonical variate analysis-based pipelines.
    Zhang J; Liang L; Anderson JR; Gatewood L; Rottenberg DA; Strother SC
    Neuroinformatics; 2008; 6(2):123-34. PubMed ID: 18506642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging.
    Yan CG; Wang XD; Zuo XN; Zang YF
    Neuroinformatics; 2016 Jul; 14(3):339-51. PubMed ID: 27075850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate autocorrelation modeling substantially improves fMRI reliability.
    Olszowy W; Aston J; Rua C; Williams GB
    Nat Commun; 2019 Dec; 10(1):1220. PubMed ID: 30899012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second-level CVA.
    Zhang J; Anderson JR; Liang L; Pulapura SK; Gatewood L; Rottenberg DA; Strother SC
    Magn Reson Imaging; 2009 Feb; 27(2):264-78. PubMed ID: 18849131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of using different software packages for BOLD analysis in planning a neurosurgical treatment in patients with brain tumours.
    Kozub J; Paciorek A; Urbanik A; Ostrogórska M
    Clin Imaging; 2020 Dec; 68():148-157. PubMed ID: 32622193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The RUMBA software: tools for neuroimaging data analysis.
    Bly BM; Rebbechi D; Hanson SJ; Grasso G
    Neuroinformatics; 2004; 2(1):71-100. PubMed ID: 15067169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MACS - a new SPM toolbox for model assessment, comparison and selection.
    Soch J; Allefeld C
    J Neurosci Methods; 2018 Aug; 306():19-31. PubMed ID: 29842901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. False fMRI activation after motion correction.
    Yakupov R; Lei J; Hoffmann MB; Speck O
    Hum Brain Mapp; 2017 Sep; 38(9):4497-4510. PubMed ID: 28580597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. fMRIflows: A Consortium of Fully Automatic Univariate and Multivariate fMRI Processing Pipelines.
    Notter MP; Herholz P; Da Costa S; Gulban OF; Isik AI; Gaglianese A; Murray MM
    Brain Topogr; 2023 Mar; 36(2):172-191. PubMed ID: 36575327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of fMRI motion correction software tools.
    Oakes TR; Johnstone T; Ores Walsh KS; Greischar LL; Alexander AL; Fox AS; Davidson RJ
    Neuroimage; 2005 Nov; 28(3):529-43. PubMed ID: 16099178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RS-FetMRI: a MATLAB-SPM Based Tool for Pre-processing Fetal Resting-State fMRI Data.
    Pecco N; Canini M; Mosser KHH; Caglioni M; Scifo P; Castellano A; Cavoretto P; Candiani M; Baldoli C; Falini A; Rosa PAD
    Neuroinformatics; 2022 Oct; 20(4):1137-1154. PubMed ID: 35834105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A survey of patient motion in disorders of consciousness and optimization of its retrospective correction.
    Hoffmann M; Carpenter TA; Williams GB; Sawiak SJ
    Magn Reson Imaging; 2015 Apr; 33(3):346-50. PubMed ID: 25485789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of image analysis software on neurofunctional activation during processing of emotional human faces.
    Fusar-Poli P; Bhattacharyya S; Allen P; Crippa JA; Borgwardt S; Martin-Santos R; Seal M; O'Carroll C; Atakan Z; Zuardi AW; McGuire P
    J Clin Neurosci; 2010 Mar; 17(3):311-4. PubMed ID: 20079652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using temporal ICA to selectively remove global noise while preserving global signal in functional MRI data.
    Glasser MF; Coalson TS; Bijsterbosch JD; Harrison SJ; Harms MP; Anticevic A; Van Essen DC; Smith SM
    Neuroimage; 2018 Nov; 181():692-717. PubMed ID: 29753843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of rs-fMRI Pre-processing for Enhanced Signal-Noise Separation, Test-Retest Reliability, and Group Discrimination.
    Shirer WR; Jiang H; Price CM; Ng B; Greicius MD
    Neuroimage; 2015 Aug; 117():67-79. PubMed ID: 25987368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DisConICA: a Software Package for Assessing Reproducibility of Brain Networks and their Discriminability across Disorders.
    Syed MA; Yang Z; Rangaprakash D; Hu X; Dretsch MN; Katz JS; Denney TS; Deshpande G
    Neuroinformatics; 2020 Jan; 18(1):87-107. PubMed ID: 31187352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers.
    Salimi-Khorshidi G; Douaud G; Beckmann CF; Glasser MF; Griffanti L; Smith SM
    Neuroimage; 2014 Apr; 90():449-68. PubMed ID: 24389422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing preprocessing and analysis pipelines for single-subject fMRI: 2. Interactions with ICA, PCA, task contrast and inter-subject heterogeneity.
    Churchill NW; Yourganov G; Oder A; Tam F; Graham SJ; Strother SC
    PLoS One; 2012; 7(2):e31147. PubMed ID: 22383999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.