These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 34773436)
21. The situation or the person? Individual and task-evoked differences in BOLD activity. Bolt T; Nomi JS; Bainter SA; Cole MW; Uddin LQ Hum Brain Mapp; 2019 Jul; 40(10):2943-2954. PubMed ID: 30919517 [TBL] [Abstract][Full Text] [Related]
22. Analysis of task-based functional MRI data preprocessed with fMRIPrep. Esteban O; Ciric R; Finc K; Blair RW; Markiewicz CJ; Moodie CA; Kent JD; Goncalves M; DuPre E; Gomez DEP; Ye Z; Salo T; Valabregue R; Amlien IK; Liem F; Jacoby N; Stojić H; Cieslak M; Urchs S; Halchenko YO; Ghosh SS; De La Vega A; Yarkoni T; Wright J; Thompson WH; Poldrack RA; Gorgolewski KJ Nat Protoc; 2020 Jul; 15(7):2186-2202. PubMed ID: 32514178 [TBL] [Abstract][Full Text] [Related]
23. Optimizing fMRI preprocessing pipelines for block-design tasks as a function of age. Churchill NW; Raamana P; Spring R; Strother SC Neuroimage; 2017 Jul; 154():240-254. PubMed ID: 28216431 [TBL] [Abstract][Full Text] [Related]
24. FSL. Jenkinson M; Beckmann CF; Behrens TE; Woolrich MW; Smith SM Neuroimage; 2012 Aug; 62(2):782-90. PubMed ID: 21979382 [TBL] [Abstract][Full Text] [Related]
25. Intersubject MVPD: Empirical comparison of fMRI denoising methods for connectivity analysis. Li Y; Saxe R; Anzellotti S PLoS One; 2019; 14(9):e0222914. PubMed ID: 31550276 [TBL] [Abstract][Full Text] [Related]
26. Reproducibility of importance extraction methods in neural network based fMRI classification. Gotsopoulos A; Saarimäki H; Glerean E; Jääskeläinen IP; Sams M; Nummenmaa L; Lampinen J Neuroimage; 2018 Nov; 181():44-54. PubMed ID: 29964190 [TBL] [Abstract][Full Text] [Related]
27. Optimizing preprocessing and analysis pipelines for single-subject fMRI. I. Standard temporal motion and physiological noise correction methods. Churchill NW; Oder A; Abdi H; Tam F; Lee W; Thomas C; Ween JE; Graham SJ; Strother SC Hum Brain Mapp; 2012 Mar; 33(3):609-27. PubMed ID: 21455942 [TBL] [Abstract][Full Text] [Related]
28. Estimating the number of independent components for functional magnetic resonance imaging data. Li YO; Adali T; Calhoun VD Hum Brain Mapp; 2007 Nov; 28(11):1251-66. PubMed ID: 17274023 [TBL] [Abstract][Full Text] [Related]
29. The significance of streamlined postprocessing approaches for clinical FMRI. Pillai JJ AJNR Am J Neuroradiol; 2013; 34(6):1194-6. PubMed ID: 23292528 [No Abstract] [Full Text] [Related]
30. Evaluation and comparison of GLM- and CVA-based fMRI processing pipelines with Java-based fMRI processing pipeline evaluation system. Zhang J; Liang L; Anderson JR; Gatewood L; Rottenberg DA; Strother SC Neuroimage; 2008 Jul; 41(4):1242-52. PubMed ID: 18482849 [TBL] [Abstract][Full Text] [Related]
31. Equitable Thresholding and Clustering: A Novel Method for Functional Magnetic Resonance Imaging Clustering in AFNI. Cox RW Brain Connect; 2019 Sep; 9(7):529-538. PubMed ID: 31115252 [TBL] [Abstract][Full Text] [Related]
32. PreSurgMapp: a MATLAB Toolbox for Presurgical Mapping of Eloquent Functional Areas Based on Task-Related and Resting-State Functional MRI. Huang H; Ding Z; Mao D; Yuan J; Zhu F; Chen S; Xu Y; Lou L; Feng X; Qi L; Qiu W; Zhang H; Zang YF Neuroinformatics; 2016 Oct; 14(4):421-38. PubMed ID: 27221107 [TBL] [Abstract][Full Text] [Related]
33. fMRIPrep: a robust preprocessing pipeline for functional MRI. Esteban O; Markiewicz CJ; Blair RW; Moodie CA; Isik AI; Erramuzpe A; Kent JD; Goncalves M; DuPre E; Snyder M; Oya H; Ghosh SS; Wright J; Durnez J; Poldrack RA; Gorgolewski KJ Nat Methods; 2019 Jan; 16(1):111-116. PubMed ID: 30532080 [TBL] [Abstract][Full Text] [Related]
34. A comparison of denoising pipelines in high temporal resolution task-based functional magnetic resonance imaging data. Mayer AR; Ling JM; Dodd AB; Shaff NA; Wertz CJ; Hanlon FM Hum Brain Mapp; 2019 Sep; 40(13):3843-3859. PubMed ID: 31119818 [TBL] [Abstract][Full Text] [Related]
35. Multi-Objective Cognitive Model: a Supervised Approach for Multi-subject fMRI Analysis. Yousefnezhad M; Zhang D Neuroinformatics; 2019 Apr; 17(2):197-210. PubMed ID: 30094688 [TBL] [Abstract][Full Text] [Related]
36. Evaluating the efficacy of multi-echo ICA denoising on model-based fMRI. Steel A; Garcia BD; Silson EH; Robertson CE Neuroimage; 2022 Dec; 264():119723. PubMed ID: 36328274 [TBL] [Abstract][Full Text] [Related]
37. Mapping the mouse brain with rs-fMRI: An optimized pipeline for functional network identification. Zerbi V; Grandjean J; Rudin M; Wenderoth N Neuroimage; 2015 Dec; 123():11-21. PubMed ID: 26296501 [TBL] [Abstract][Full Text] [Related]
38. The connectome mapper: an open-source processing pipeline to map connectomes with MRI. Daducci A; Gerhard S; Griffa A; Lemkaddem A; Cammoun L; Gigandet X; Meuli R; Hagmann P; Thiran JP PLoS One; 2012; 7(12):e48121. PubMed ID: 23272041 [TBL] [Abstract][Full Text] [Related]