These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 34773765)

  • 1. Characterization of microstructural anisotropy using the mode-converted ultrasonic scattering in titanium alloy.
    Du H
    Ultrasonics; 2022 Feb; 119():106633. PubMed ID: 34773765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Structural Anisotropy in a Porous Titanium Medium Mimicking Trabecular Bone Structure Using Mode-Converted Ultrasonic Scattering.
    Du H; Yousefian O; Horn T; Muller M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 May; 67(5):1017-1024. PubMed ID: 31940527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transverse-to-transverse diffuse ultrasonic scattering.
    Hu P; Turner JA
    J Acoust Soc Am; 2017 Aug; 142(2):1112. PubMed ID: 28863556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mode-converted diffuse ultrasonic backscatter.
    Hu P; Kube CM; Koester LW; Turner JA
    J Acoust Soc Am; 2013 Aug; 134(2):982-90. PubMed ID: 23927097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of Microstructural Features and Prediction of Mechanical Properties of a Dual-Phase Ti-6Al-4V Alloy.
    Yang D; Liu Z
    Materials (Basel); 2016 Jul; 9(8):. PubMed ID: 28773751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial and directional characterization of wire and arc additive manufactured aluminum alloy using phased array ultrasonic backscattering method.
    Liu Y; Wang X; Oliveira JP; He J; Guan X
    Ultrasonics; 2023 Jul; 132():107024. PubMed ID: 37141700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mode-converted ultrasonic scattering in polycrystals with elongated grains.
    Arguelles AP; Kube CM; Hu P; Turner JA
    J Acoust Soc Am; 2016 Sep; 140(3):1570. PubMed ID: 27914376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fit of cast commercially pure titanium and Ti-6Al-4V alloy crowns before and after marginal refinement by electrical discharge machining.
    Contreras EF; Henriques GE; Giolo SR; Nobilo MA
    J Prosthet Dent; 2002 Nov; 88(5):467-72. PubMed ID: 12473994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface nanocrystallization of Ti-6Al-4V alloy: microstructural and mechanical characterization.
    Pi Y; Agoda-Tandjawa G; Potiron S; Demangel C; Retraint D; Benhayoune H
    J Nanosci Nanotechnol; 2012 Jun; 12(6):4892-7. PubMed ID: 22905548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Oxygen Variation on High Cycle Fatigue Behavior of Ti-6Al-4V Titanium Alloy.
    Tang L; Fan J; Kou H; Tang B; Li J
    Materials (Basel); 2020 Sep; 13(17):. PubMed ID: 32882907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infrared gold alloy brazing on titanium and Ti-6Al-4V alloy surfaces and its application to removable prosthodontics.
    Wakabayashi N; Ai M; Iijima K; Takada Y; Okuno O
    J Prosthodont; 1999 Sep; 8(3):180-7. PubMed ID: 10740500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superplasticity of Ti-6Al-4V Titanium Alloy: Microstructure Evolution and Constitutive Modelling.
    Mosleh AO; Mikhaylovskaya AV; Kotov AD; Kwame JS; Aksenov SA
    Materials (Basel); 2019 May; 12(11):. PubMed ID: 31151181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Ultrasonic Array Method for the Inspection of TC18 Addictive Manufacturing Titanium Alloy.
    Li W; Zhou Z; Li Y
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31658623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature and Microstructure Evolution in Gas Tungsten Arc Welding Wire Feed Additive Manufacturing of Ti-6Al-4V.
    Charles Murgau C; Lundbäck A; Åkerfeldt P; Pederson R
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31661882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of Ti-6Al-4V alloy acoustic softening.
    Fartashvand V; Abdullah A; Sadough Vanini SA
    Ultrason Sonochem; 2017 Sep; 38():744-749. PubMed ID: 27617770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocompatibility of new low-cost (α + β)-type Ti-Mo-Fe alloys for long-term implantation.
    Abdelrhman Y; Gepreel MA; Kobayashi S; Okano S; Okamoto T
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():552-562. PubMed ID: 30889729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of dextrose and lipopolysaccharide on the corrosion behavior of a Ti-6Al-4V alloy with a smooth surface or treated with double-acid-etching.
    Faverani LP; Assunção WG; de Carvalho PS; Yuan JC; Sukotjo C; Mathew MT; Barao VA
    PLoS One; 2014; 9(3):e93377. PubMed ID: 24671257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalized ultrasonic scattering model for arbitrary transducer configurations.
    Arguelles AP; Turner JA
    J Acoust Soc Am; 2019 Dec; 146(6):4413. PubMed ID: 31893723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioactivity of Ti-6Al-4V alloy implants treated with ibandronate after the formation of the nanotube TiO2 layer.
    Moon SH; Lee SJ; Park IS; Lee MH; Soh YJ; Bae TS; Kim HS
    J Biomed Mater Res B Appl Biomater; 2012 Nov; 100(8):2053-9. PubMed ID: 22915455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-situ monitoring of the electrochemical behavior of cellular structured biomedical Ti-6Al-4V alloy fabricated by electron beam melting in simulated physiological fluid.
    Gai X; Bai Y; Li S; Hou W; Hao Y; Zhang X; Yang R; Misra RDK
    Acta Biomater; 2020 Apr; 106():387-395. PubMed ID: 32058079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.