These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 34773890)
1. Decoding the molecular subtypes of breast cancer seen on multimodal ultrasound images using an assembled convolutional neural network model: A prospective and multicentre study. Zhou BY; Wang LF; Yin HH; Wu TF; Ren TT; Peng C; Li DX; Shi H; Sun LP; Zhao CK; Xu HX EBioMedicine; 2021 Dec; 74():103684. PubMed ID: 34773890 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional convolutional neural network model to identify clinically significant prostate cancer in transrectal ultrasound videos: a prospective, multi-institutional, diagnostic study. Sun YK; Zhou BY; Miao Y; Shi YL; Xu SH; Wu DM; Zhang L; Xu G; Wu TF; Wang LF; Yin HH; Ye X; Lu D; Han H; Xiang LH; Zhu XX; Zhao CK; Xu HX; EClinicalMedicine; 2023 Jun; 60():102027. PubMed ID: 37333662 [TBL] [Abstract][Full Text] [Related]
3. Assessing the Influence of B-US, CDFI, SE, and Patient Age on Predicting Molecular Subtypes in Breast Lesions Using Deep Learning Algorithms. Liu W; Wang D; Liu L; Zhou Z J Ultrasound Med; 2024 Aug; 43(8):1375-1388. PubMed ID: 38581195 [TBL] [Abstract][Full Text] [Related]
4. Deep learning radiopathomics based on preoperative US images and biopsy whole slide images can distinguish between luminal and non-luminal tumors in early-stage breast cancers. Huang Y; Yao Z; Li L; Mao R; Huang W; Hu Z; Hu Y; Wang Y; Guo R; Tang X; Yang L; Wang Y; Luo R; Yu J; Zhou J EBioMedicine; 2023 Aug; 94():104706. PubMed ID: 37478528 [TBL] [Abstract][Full Text] [Related]
5. Identification of pathological complete response after neoadjuvant chemotherapy for breast cancer: comparison of greyscale ultrasound, shear wave elastography, and MRI. Evans A; Whelehan P; Thompson A; Purdie C; Jordan L; Macaskill J; Henderson S; Vinnicombe S Clin Radiol; 2018 Oct; 73(10):910.e1-910.e6. PubMed ID: 29980324 [TBL] [Abstract][Full Text] [Related]
6. Evaluating different combination methods to analyse ultrasound and shear wave elastography images automatically through discriminative convolutional neural network in breast cancer imaging. Hoffmann R; Reich C; Skerl K Int J Comput Assist Radiol Surg; 2022 Dec; 17(12):2231-2237. PubMed ID: 36018397 [TBL] [Abstract][Full Text] [Related]
7. Deep learning applied to two-dimensional color Doppler flow imaging ultrasound images significantly improves diagnostic performance in the classification of breast masses: a multicenter study. Yu TF; He W; Gan CG; Zhao MC; Zhu Q; Zhang W; Wang H; Luo YK; Nie F; Yuan LJ; Wang Y; Guo YL; Yuan JJ; Ruan LT; Wang YC; Zhang RF; Zhang HX; Ning B; Song HM; Zheng S; Li Y; Guang Y Chin Med J (Engl); 2021 Jan; 134(4):415-424. PubMed ID: 33617184 [TBL] [Abstract][Full Text] [Related]
8. Deep learning with convolutional neural network in the assessment of breast cancer molecular subtypes based on US images: a multicenter retrospective study. Jiang M; Zhang D; Tang SC; Luo XM; Chuan ZR; Lv WZ; Jiang F; Ni XJ; Cui XW; Dietrich CF Eur Radiol; 2021 Jun; 31(6):3673-3682. PubMed ID: 33226454 [TBL] [Abstract][Full Text] [Related]
9. Classification of Breast Masses on Ultrasound Shear Wave Elastography using Convolutional Neural Networks. Fujioka T; Katsuta L; Kubota K; Mori M; Kikuchi Y; Kato A; Oda G; Nakagawa T; Kitazume Y; Tateishi U Ultrason Imaging; 2020; 42(4-5):213-220. PubMed ID: 32501152 [TBL] [Abstract][Full Text] [Related]
10. Ultrasound identification of hepatic echinococcosis using a deep convolutional neural network model in China: a retrospective, large-scale, multicentre, diagnostic accuracy study. Yang Y; Cairang Y; Jiang T; Zhou J; Zhang L; Qi B; Ma S; Tang L; Xu D; Bu L; Bu R; Jing X; Wang H; Zhou Z; Zhao C; Luo B; Liu L; Guo J; Nima Y; Hua G; Wa Z; Zhang Y; Zhou G; Jiang W; Wang C; De Y; Yu X; Cheng Z; Han Z; Liu F; Dou J; Feng H; Wu C; Wang R; Hu J; Yang Q; Luo Y; Wu J; Fan H; Liang P; Yu J Lancet Digit Health; 2023 Aug; 5(8):e503-e514. PubMed ID: 37507196 [TBL] [Abstract][Full Text] [Related]
11. Preoperative Non-Invasive Prediction of Breast Cancer Molecular Subtypes With a Deep Convolutional Neural Network on Ultrasound Images. Li C; Huang H; Chen Y; Shao S; Chen J; Wu R; Zhang Q Front Oncol; 2022; 12():848790. PubMed ID: 35924158 [TBL] [Abstract][Full Text] [Related]
12. Diagnostic value of commercially available shear-wave elastography for breast cancers: integration into BI-RADS classification with subcategories of category 4. Youk JH; Gweon HM; Son EJ; Han KH; Kim JA Eur Radiol; 2013 Oct; 23(10):2695-704. PubMed ID: 23652850 [TBL] [Abstract][Full Text] [Related]
13. A combined ultrasonic B-mode and color Doppler system for the classification of breast masses using neural network. Qian X; Zhang B; Liu S; Wang Y; Chen X; Liu J; Yang Y; Chen X; Wei Y; Xiao Q; Ma J; Shung KK; Zhou Q; Liu L; Chen Z Eur Radiol; 2020 May; 30(5):3023-3033. PubMed ID: 32006174 [TBL] [Abstract][Full Text] [Related]
14. Diagnostic Performance of Superb Microvascular Imaging (SMI) Combined with Shear-Wave Elastography in Evaluating Breast Lesions. Zhu YC; Zhang Y; Deng SH; Jiang Q Med Sci Monit; 2018 Aug; 24():5935-5942. PubMed ID: 30145602 [TBL] [Abstract][Full Text] [Related]
15. Multimodal ultrasound features of breast cancers: correlation with molecular subtypes. Zhu JY; He HL; Jiang XC; Bao HW; Chen F BMC Med Imaging; 2023 Apr; 23(1):57. PubMed ID: 37069528 [TBL] [Abstract][Full Text] [Related]
16. Impact of molecular subtypes classification concordance between preoperative core needle biopsy and surgical specimen on early breast cancer management: Single-institution experience and review of published literature. Meattini I; Bicchierai G; Saieva C; De Benedetto D; Desideri I; Becherini C; Abdulcadir D; Vanzi E; Boeri C; Gabbrielli S; Lucci F; Sanchez L; Casella D; Bernini M; Orzalesi L; Vezzosi V; Greto D; Mangoni M; Bianchi S; Livi L; Nori J Eur J Surg Oncol; 2017 Apr; 43(4):642-648. PubMed ID: 27889196 [TBL] [Abstract][Full Text] [Related]
17. Combination of shear-wave elastography and color Doppler: Feasible method to avoid unnecessary breast excision of fibroepithelial lesions diagnosed by core needle biopsy. Kim GR; Choi JS; Han BK; Ko EY; Ko ES; Hahn SY PLoS One; 2017; 12(5):e0175380. PubMed ID: 28472030 [TBL] [Abstract][Full Text] [Related]
18. Comparison of 3D and 2D shear-wave elastography for differentiating benign and malignant breast masses: focus on the diagnostic performance. Choi HY; Sohn YM; Seo M Clin Radiol; 2017 Oct; 72(10):878-886. PubMed ID: 28526455 [TBL] [Abstract][Full Text] [Related]
19. A new qualitative pattern classification of shear wave elastograghy for solid breast mass evaluation. Cong R; Li J; Guo S Eur J Radiol; 2017 Feb; 87():111-119. PubMed ID: 28065370 [TBL] [Abstract][Full Text] [Related]
20. Lesion stiffness measured by shear-wave elastography: Preoperative predictor of the histologic underestimation of US-guided core needle breast biopsy. Park AY; Son EJ; Kim JA; Han K; Youk JH Eur J Radiol; 2015 Dec; 84(12):2509-14. PubMed ID: 26467705 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]