These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 34773943)

  • 1. Nuclear relaxation rate enhancement by a
    Belorizky E; Fries PH
    J Chem Phys; 2021 Nov; 155(18):184108. PubMed ID: 34773943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simple expressions of the nuclear relaxation rate enhancement due to quadrupole nuclei in slowly tumbling molecules.
    Fries PH; Belorizky E
    J Chem Phys; 2015 Jul; 143(4):044202. PubMed ID: 26233122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of [C3H5N2]6[Bi4Br18] by means of (1)H NMR relaxometry and quadrupole relaxation enhancement.
    Masierak W; Florek-Wojciechowska M; Oglodek I; Jakubas R; Privalov AF; Kresse B; Fujara F; Kruk D
    J Chem Phys; 2015 May; 142(20):204503. PubMed ID: 26026454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of the magnitude of quadrupole relaxation enhancement in the context of magnetic resonance imaging contrast.
    Kruk D; Masiewicz E; Umut E; Petrovic A; Kargl R; Scharfetter H
    J Chem Phys; 2019 May; 150(18):184306. PubMed ID: 31091892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model - free approach to quadrupole spin relaxation in solid
    Kruk D; Goesweiner C; Masiewicz E; Umut E; Sampl C; Scharfetter H
    Phys Chem Chem Phys; 2018 Sep; 20(36):23414-23423. PubMed ID: 30179238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear magnetic resonance proton dipolar order relaxation in thermotropic liquid crystals: a quantum theoretical approach.
    Zamar RC; Mensio O
    J Chem Phys; 2004 Dec; 121(23):11927-41. PubMed ID: 15634155
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Kruk D; Umut E; Masiewicz E; Sampl C; Fischer R; Spirk S; Goesweiner C; Scharfetter H
    Phys Chem Chem Phys; 2018 May; 20(18):12710-12718. PubMed ID: 29697118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quadrupole relaxation enhancement--application to molecular crystals.
    Kruk D; Kubica A; Masierak W; Privalov AF; Wojciechowski M; Medycki W
    Solid State Nucl Magn Reson; 2011 Oct; 40(3):114-20. PubMed ID: 21906916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-quantum quadrupole relaxation enhancement effects in
    Kruk D; Umut E; Masiewicz E; Fischer R; Scharfetter H
    J Chem Phys; 2019 May; 150(18):184309. PubMed ID: 31091937
    [No Abstract]   [Full Text] [Related]  

  • 10.
    Kruk D; Rochowski P; Florek-Wojciechowska M; Sebastião PJ; Lurie DJ; Broche LM
    J Magn Reson; 2020 Sep; 318():106783. PubMed ID: 32755749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The quadrupole enhanced 1H spin-lattice relaxation of the amide proton in slow tumbling proteins.
    Westlund PO
    Phys Chem Chem Phys; 2010 Apr; 12(13):3136-40. PubMed ID: 20237701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-field approach to double resonance in nuclear quadrupole resonance of spin-1 nuclei.
    Prescott DW; Olmedo O; Soon S; Sauer KL
    J Chem Phys; 2007 May; 126(20):204504. PubMed ID: 17552775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. T1 rho in nuclear quadrupole resonance: a theoretical study.
    Seliger J
    Solid State Nucl Magn Reson; 1997 Aug; 8(4):207-17. PubMed ID: 9373901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. (1)H NMR relaxometry and quadrupole relaxation enhancement as a sensitive probe of dynamical properties of solids--[C(NH2)3]3Bi2I9 as an example.
    Florek-Wojciechowska M; Wojciechowski M; Jakubas R; Brym S; Kruk D
    J Chem Phys; 2016 Feb; 144(5):054501. PubMed ID: 26851925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic lattice distortions in Sr2RuO4: microscopic studies by perturbed angular correlation spectroscopy and ab initio calculations.
    Mishra SN; Rots M; Cottenier S
    J Phys Condens Matter; 2010 Sep; 22(38):385602. PubMed ID: 21386555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR Relaxation Rates of Quadrupolar Aqueous Ions from Classical Molecular Dynamics Using Force-Field Specific Sternheimer Factors.
    Chubak I; Scalfi L; Carof A; Rotenberg B
    J Chem Theory Comput; 2021 Oct; 17(10):6006-6017. PubMed ID: 34570493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Planar three-coordinate high-spin Fe(II) complexes with large orbital angular momentum: Mössbauer, electron paramagnetic resonance, and electronic structure studies.
    Andres H; Bominaar EL; Smith JM; Eckert NA; Holland PL; Münck E
    J Am Chem Soc; 2002 Mar; 124(12):3012-25. PubMed ID: 11902893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Static solid-state (14)N NMR and computational studies of nitrogen EFG tensors in some crystalline amino acids.
    O'Dell LA; Schurko RW
    Phys Chem Chem Phys; 2009 Aug; 11(32):7069-77. PubMed ID: 19652842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Definitive solid-state 185/187Re NMR spectral evidence for and analysis of the origin of high-order quadrupole-induced effects for I=5/2.
    Widdifield CM; Bain AD; Bryce DL
    Phys Chem Chem Phys; 2011 Jul; 13(27):12413-20. PubMed ID: 21629964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic relaxation of paramagnetic metal ions and NMR relaxivity in solution: critical analysis of various approaches and application to a Gd(III)-based contrast agent.
    Fries PH; Belorizky E
    J Chem Phys; 2005 Sep; 123(12):124510. PubMed ID: 16397947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.