BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34773966)

  • 1. Whole genome sequencing facilitates intragenic variant interpretation following modifier screening in C. elegans.
    Jean F; Stasiuk S; Maroilley T; Diao C; Galbraith A; Tarailo-Graovac M
    BMC Genomics; 2021 Nov; 22(1):820. PubMed ID: 34773966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model Organism Modifier (MOM): a user-friendly Galaxy workflow to detect modifiers from genome sequencing data using Caenorhabditis elegans.
    Maroilley T; Rahit KMTH; Chida AR; Cotra F; Rodrigues Alves Barbosa V; Tarailo-Graovac M
    G3 (Bethesda); 2023 Nov; 13(11):. PubMed ID: 37585487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of a Sibling Subtraction Method for Identifying Causal Mutations in
    Joseph BB; Blouin NA; Fay DS
    G3 (Bethesda); 2018 Feb; 8(2):669-678. PubMed ID: 29237702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Suppressors of
    Bhandari N; Rourke C; Wilmoth T; Bheemreddy A; Schulman D; Collins D; Smith HE; Golden A; Jaramillo-Lambert A
    G3 (Bethesda); 2020 Apr; 10(4):1183-1191. PubMed ID: 32086248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Strategy To Isolate Modifiers of
    Wiesenfahrt T; Duanmu J; Snider F; Moerman D; Au V; Li-Leger E; Flibotte S; Parker DM; Marshall CJ; Nishimura EO; Mains PE; McGhee JD
    G3 (Bethesda); 2018 May; 8(5):1425-1437. PubMed ID: 29593072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of suppressors of mbk-2/DYRK by whole-genome sequencing.
    Wang Y; Wang JT; Rasoloson D; Stitzel ML; O' Connell KF; Smith HE; Seydoux G
    G3 (Bethesda); 2014 Feb; 4(2):231-41. PubMed ID: 24347622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Cas9 human gene replacement and phenomic characterization in
    McDiarmid TA; Au V; Loewen AD; Liang J; Mizumoto K; Moerman DG; Rankin CH
    Dis Model Mech; 2018 Nov; 11(12):. PubMed ID: 30361258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MIP-MAP: High-Throughput Mapping of
    Mok CA; Au V; Thompson OA; Edgley ML; Gevirtzman L; Yochem J; Lowry J; Memar N; Wallenfang MR; Rasoloson D; Bowerman B; Schnabel R; Seydoux G; Moerman DG; Waterston RH
    Genetics; 2017 Oct; 207(2):447-463. PubMed ID: 28827289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and Efficient Identification of Caenorhabditis elegans Legacy Mutations Using Hawaiian SNP-Based Mapping and Whole-Genome Sequencing.
    Jaramillo-Lambert A; Fuchsman AS; Fabritius AS; Smith HE; Golden A
    G3 (Bethesda); 2015 Mar; 5(5):1007-19. PubMed ID: 25740937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein Phosphatase 1 Down Regulates ZYG-1 Levels to Limit Centriole Duplication.
    Peel N; Iyer J; Naik A; Dougherty MP; Decker M; O'Connell KF
    PLoS Genet; 2017 Jan; 13(1):e1006543. PubMed ID: 28103229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ZYG-1 promotes limited centriole amplification in the C. elegans seam lineage.
    Wolf B; Balestra FR; Spahr A; Gönczy P
    Dev Biol; 2018 Feb; 434(2):221-230. PubMed ID: 29307730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole genome sequencing and the transformation of C. elegans forward genetics.
    Hu PJ
    Methods; 2014 Aug; 68(3):437-40. PubMed ID: 24874788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput capturing and characterization of mutations in essential genes of Caenorhabditis elegans.
    Chu JS; Chua SY; Wong K; Davison AM; Johnsen R; Baillie DL; Rose AM
    BMC Genomics; 2014 May; 15(1):361. PubMed ID: 24884423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of mitotic and meiotic centriole duplication by the Plk4-related kinase ZYG-1.
    Peters N; Perez DE; Song MH; Liu Y; Müller-Reichert T; Caron C; Kemphues KJ; O'Connell KF
    J Cell Sci; 2010 Mar; 123(Pt 5):795-805. PubMed ID: 20144993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Efficient Genome Editing Strategy To Generate Putative Null Mutants in
    Wang H; Park H; Liu J; Sternberg PW
    G3 (Bethesda); 2018 Nov; 8(11):3607-3616. PubMed ID: 30224336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Caenorhabditis elegans DAF-2 as a Model for Human Insulin Receptoropathies.
    Bulger DA; Fukushige T; Yun S; Semple RK; Hanover JA; Krause MW
    G3 (Bethesda); 2017 Jan; 7(1):257-268. PubMed ID: 27856697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Essential Genes in Caenorhabditis elegans with Lethal Mutations Maintained by Genetic Balancers.
    Yu S; Zheng C; Chu JS
    Methods Mol Biol; 2022; 2377():345-362. PubMed ID: 34709626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined flow cytometry and high-throughput image analysis for the study of essential genes in Caenorhabditis elegans.
    Hernando-Rodríguez B; Erinjeri AP; Rodríguez-Palero MJ; Millar V; González-Hernández S; Olmedo M; Schulze B; Baumeister R; Muñoz MJ; Askjaer P; Artal-Sanz M
    BMC Biol; 2018 Mar; 16(1):36. PubMed ID: 29598825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harnessing the power of genetics: fast forward genetics in Caenorhabditis elegans.
    Singh J
    Mol Genet Genomics; 2021 Jan; 296(1):1-20. PubMed ID: 32888055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of
    Montoyo-Rosario JG; Armenti ST; Zilberman Y; Nance J
    Genetics; 2020 Apr; 214(4):941-959. PubMed ID: 32005655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.