BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 34774092)

  • 1. Hydrogel-hydroxyapatite-monomeric collagen type-I scaffold with low-frequency electromagnetic field treatment enhances osteochondral repair in rabbits.
    Yan J; Liu C; Tu C; Zhang R; Tang X; Li H; Wang H; Ma Y; Zhang Y; Wu H; Sheng G
    Stem Cell Res Ther; 2021 Nov; 12(1):572. PubMed ID: 34774092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Repairing defects of rabbit articular cartilage and subchondral bone with biphasic scaffold combined bone marrow stromal stem cells].
    Liu M; Xiang Z; Pei F; Huang F; Cen S; Zhong G; Fan H; Xiao Y; Sun J; Gao Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2010 Jan; 24(1):87-93. PubMed ID: 20135980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of HIF-1alpha in Bone Marrow Mesenchymal Stem Cells Promote the Repair of Mandibular Condylar Osteochondral Defect in a Rabbit Model.
    Cheng MS; Yi X; Zhou Q
    J Oral Maxillofac Surg; 2021 Feb; 79(2):345.e1-345.e15. PubMed ID: 33171116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of a biphase composite scaffold and its application in tissue engineering for femoral osteochondral defects in rabbits.
    Ruan SQ; Yan L; Deng J; Huang WL; Jiang DM
    Int Orthop; 2017 Sep; 41(9):1899-1908. PubMed ID: 28616703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photo-crosslinked integrated triphasic scaffolds with gradient composition and strength for osteochondral regeneration.
    Wang W; Li H; Song P; Guo Y; Luo D; Li H; Ma L
    J Mater Chem B; 2024 Jan; 12(5):1271-1284. PubMed ID: 38186375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-layered collagen-based scaffolds for osteochondral defect repair in rabbits.
    Levingstone TJ; Thompson E; Matsiko A; Schepens A; Gleeson JP; O'Brien FJ
    Acta Biomater; 2016 Mar; 32():149-160. PubMed ID: 26724503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced osteogenesis of bone marrow stem cells cultured on hydroxyapatite/collagen I scaffold in the presence of low-frequency magnetic field.
    Wang H; Tang X; Li W; Chen J; Li H; Yan J; Yuan X; Wu H; Liu C
    J Mater Sci Mater Med; 2019 Jul; 30(8):89. PubMed ID: 31342178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical Study of Autologous Cartilage Transplantation Based on Nano-Hydroxyapatite in the Treatment of Talar Osteochondral Injury.
    Wang W; Wang X; Wang Y; Tong C
    J Nanosci Nanotechnol; 2021 Feb; 21(2):1250-1258. PubMed ID: 33183469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aptamer-Functionalized Bioscaffold Enhances Cartilage Repair by Improving Stem Cell Recruitment in Osteochondral Defects of Rabbit Knees.
    Wang X; Song X; Li T; Chen J; Cheng G; Yang L; Chen C
    Am J Sports Med; 2019 Aug; 47(10):2316-2326. PubMed ID: 31233332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Experimental study on loading naringin composite scaffolds for repairing rabbit osteochondral defects].
    Huang J; Wang S; Zhang X; Li G; Ji P; Zhao H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2017 Apr; 31(4):489-496. PubMed ID: 29798617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromagnetic field-mediated chitosan/gelatin/nano-hydroxyapatite and bone-derived scaffolds regulate the osteoblastic and chondrogenic phenotypes of adipose-derived stem cells to construct osteochondral tissue engineering niche in vitro.
    Hu X; Su Y; Xu J; Cheng YY; Liu T; Li X; Ma X; Chen Z; Song K
    Int J Biol Macromol; 2024 Feb; 258(Pt 1):128829. PubMed ID: 38128807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesenchymal stem cell-loaded porous tantalum integrated with biomimetic 3D collagen-based scaffold to repair large osteochondral defects in goats.
    Wei X; Liu B; Liu G; Yang F; Cao F; Dou X; Yu W; Wang B; Zheng G; Cheng L; Ma Z; Zhang Y; Yang J; Wang Z; Li J; Cui D; Wang W; Xie H; Li L; Zhang F; Lineaweaver WC; Zhao D
    Stem Cell Res Ther; 2019 Mar; 10(1):72. PubMed ID: 30837004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteochondral repair using a scaffold-free tissue-engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatite-based artificial bone.
    Shimomura K; Moriguchi Y; Ando W; Nansai R; Fujie H; Hart DA; Gobbi A; Kita K; Horibe S; Shino K; Yoshikawa H; Nakamura N
    Tissue Eng Part A; 2014 Sep; 20(17-18):2291-304. PubMed ID: 24655056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteochondral defect repair using bilayered hydrogels encapsulating both chondrogenically and osteogenically pre-differentiated mesenchymal stem cells in a rabbit model.
    Lam J; Lu S; Lee EJ; Trachtenberg JE; Meretoja VV; Dahlin RL; van den Beucken JJ; Tabata Y; Wong ME; Jansen JA; Mikos AG; Kasper FK
    Osteoarthritis Cartilage; 2014 Sep; 22(9):1291-300. PubMed ID: 25008204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bilayered, peptide-biofunctionalized hydrogels for in vivo osteochondral tissue repair.
    Guo JL; Kim YS; Koons GL; Lam J; Navara AM; Barrios S; Xie VY; Watson E; Smith BT; Pearce HA; Orchard EA; van den Beucken JJJP; Jansen JA; Wong ME; Mikos AG
    Acta Biomater; 2021 Jul; 128():120-129. PubMed ID: 33930575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Slotted Decellularized Osteochondral Scaffold With Layer-Specific Release of Stem Cell Differentiation Stimulators Enhances Cartilage and Bone Regeneration in Osteochondral Defects in a Rabbit Model.
    Deng Z; Zhu W; Lu B; Li M; Xu D
    Am J Sports Med; 2022 Oct; 50(12):3390-3405. PubMed ID: 36122351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular matrix derived from allogenic decellularized bone marrow mesenchymal stem cell sheets for the reconstruction of osteochondral defects in rabbits.
    Wang Z; Han L; Sun T; Ma J; Sun S; Ma L; Wu B
    Acta Biomater; 2020 Dec; 118():54-68. PubMed ID: 33068746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mussel-Inspired Tough Hydrogel with In Situ Nanohydroxyapatite Mineralization for Osteochondral Defect Repair.
    Gan D; Wang Z; Xie C; Wang X; Xing W; Ge X; Yuan H; Wang K; Tan H; Lu X
    Adv Healthc Mater; 2019 Nov; 8(22):e1901103. PubMed ID: 31609095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ectopic osteochondral formation of biomimetic porous PVA-n-HA/PA6 bilayered scaffold and BMSCs construct in rabbit.
    Qu D; Li J; Li Y; Khadka A; Zuo Y; Wang H; Liu Y; Cheng L
    J Biomed Mater Res B Appl Biomater; 2011 Jan; 96(1):9-15. PubMed ID: 20967773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-Modified Nano-Hydroxyapatite Uniformly Dispersed on High-Porous GelMA Scaffold Surfaces for Enhanced Osteochondral Regeneration.
    Zheng S; Li D; Liu Q; Tang C; Hu W; Ma S; Xu Y; Ma Y; Guo Y; Wei B; Du C; Wang L
    Int J Nanomedicine; 2023; 18():5907-5923. PubMed ID: 37886722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.