BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 3477427)

  • 1. Mechanisms of generalized epilepsy with spike and wave discharge.
    Avoli M
    Electroencephalogr Clin Neurophysiol Suppl; 1987; 39():184-90. PubMed ID: 3477427
    [No Abstract]   [Full Text] [Related]  

  • 2. Brain-stem and cortical mechanisms in an animal model of generalized corticoreticular epilepsy.
    Gloor P; Testa G; Guberman A
    Trans Am Neurol Assoc; 1973; 98():203-5. PubMed ID: 4784936
    [No Abstract]   [Full Text] [Related]  

  • 3. Electroencephalographic characterization of spike-wave discharges in cortex and thalamus in WAG/Rij rats.
    Sitnikova E; van Luijtelaar G
    Epilepsia; 2007 Dec; 48(12):2296-311. PubMed ID: 18196621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Experimental epilepsy. Study on the origin and transmission of the spike wave].
    Teijeira J; González-Barón S
    Rev Med Univ Navarra; 1971 Dec; 15(4):261-72. PubMed ID: 5152541
    [No Abstract]   [Full Text] [Related]  

  • 5. Involvement of cortical, thalamic and midbrain reticular formation neurons in spike and wave discharges: extracellular study in feline generalized penicillin epilepsy.
    Pellegrini A; Ermani M; Testa G
    Exp Neurol; 1985 Aug; 89(2):465-78. PubMed ID: 4018213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. After-discharge bursts in cobalt and penicillin foci in primate cortex.
    Grimm RJ; Frazee JG; Ozbay S
    Electroencephalogr Clin Neurophysiol; 1973 Mar; 34(3):281-301. PubMed ID: 4129615
    [No Abstract]   [Full Text] [Related]  

  • 7. Interaction of cortex and thalamus in spike and wave discharges of feline generalized penicillin epilepsy.
    Avoli M; Gloor P
    Exp Neurol; 1982 Apr; 76(1):196-217. PubMed ID: 7084360
    [No Abstract]   [Full Text] [Related]  

  • 8. Relationship of phasic sleep phenomena, spike-wave discharges, and state-dependent responsiveness in sleep.
    Halasz P; Kelemen A
    Epilepsia; 2010 May; 51(5):934-5. PubMed ID: 20536531
    [No Abstract]   [Full Text] [Related]  

  • 9. [Role of the thalamus in the physiopathology of epilepsy].
    Naquet R; Silva-Barrat C; Ménini C
    Rev Neurol (Paris); 1986; 142(4):384-90. PubMed ID: 3538288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thalamic lesions in a genetic rat model of absence epilepsy: dissociation between spike-wave discharges and sleep spindles.
    Meeren HK; Veening JG; Möderscheim TA; Coenen AM; van Luijtelaar G
    Exp Neurol; 2009 May; 217(1):25-37. PubMed ID: 19416679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ontogenetic development of bioelectrical activity of the epileptogenic focus in rat neocortex.
    Mares P
    Neuropadiatrie; 1973 Dec; 4(4):434-45. PubMed ID: 4801895
    [No Abstract]   [Full Text] [Related]  

  • 12. Generalized epilepsy with spike-and-wave discharge: a reinterpretation of its electrographic and clinical manifestations. The 1977 William G. Lennox Lecture, American Epilepsy Society.
    Gloor P
    Epilepsia; 1979 Oct; 20(5):571-88. PubMed ID: 477645
    [No Abstract]   [Full Text] [Related]  

  • 13. Experimental thalamic focus and thalamocortical epileptogenic mechanisms in the brain of turtle.
    Servít Z; Strejcková A
    Epilepsia; 1973 Dec; 14(4):437-45. PubMed ID: 4521100
    [No Abstract]   [Full Text] [Related]  

  • 14. Isolated head of the turtle- a useful experimental model in the physiology and pathophysiology of the brain.
    Strejcková A; Servĭt Z
    Physiol Bohemoslov; 1973; 22(1):37-41. PubMed ID: 4269745
    [No Abstract]   [Full Text] [Related]  

  • 15. Somato-sensory evoked potentials in thalamus and cortex of man.
    Pagni CA
    Electroencephalogr Clin Neurophysiol; 1967; ():Suppl 26:147+. PubMed ID: 4177620
    [No Abstract]   [Full Text] [Related]  

  • 16. Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory.
    Meeren H; van Luijtelaar G; Lopes da Silva F; Coenen A
    Arch Neurol; 2005 Mar; 62(3):371-6. PubMed ID: 15767501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The neurophysiological basis of epileptic activity: a condensed overview.
    Speckmann EJ; Elger CE
    Epilepsy Res Suppl; 1991; 2():1-7. PubMed ID: 1760082
    [No Abstract]   [Full Text] [Related]  

  • 18. Effects of bilateral partial diencephalic lesions on cortical epileptic activity in generalized penicillin epilepsy in the cat.
    Pellegrini A; Gloor P
    Exp Neurol; 1979 Nov; 66(2):285-308. PubMed ID: 488222
    [No Abstract]   [Full Text] [Related]  

  • 19. Ectopic action-potential generation in epileptogenic cortex.
    Scobey RP; Gabor AJ
    J Neurophysiol; 1975 Mar; 38(2):383-4. PubMed ID: 1127447
    [No Abstract]   [Full Text] [Related]  

  • 20. Laminar field potentials and unit activity in the cortex during visual evoked potentials in feline generalized penicillin epilepsy.
    Pellegrini A; Zanotto L; Ermani M; Chemello R; Testa G
    Exp Neurol; 1986 Dec; 94(3):455-68. PubMed ID: 3780900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.