These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 34774280)

  • 1. Mining patterns of autonomous vehicle crashes involving vulnerable road users to understand the associated factors.
    Kutela B; Das S; Dadashova B
    Accid Anal Prev; 2022 Feb; 165():106473. PubMed ID: 34774280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancing investigation of automated vehicle crashes using text analytics of crash narratives and Bayesian analysis.
    Lee S; Arvin R; Khattak AJ
    Accid Anal Prev; 2023 Mar; 181():106932. PubMed ID: 36580765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What can we learn from the AV crashes? - An association rule analysis for identifying the contributing risky factors.
    Liu P; Guo Y; Liu P; Ding H; Cao J; Zhou J; Feng Z
    Accid Anal Prev; 2024 May; 199():107492. PubMed ID: 38428241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stated preference analysis of autonomous vehicle among bicyclists and pedestrians in Pittsburgh using Bayesian Networks.
    Imanishimwe D; Kumar A
    Accid Anal Prev; 2023 Nov; 192():107278. PubMed ID: 37683566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors influencing safety perceptions of sharing roadways with autonomous vehicles among vulnerable roadway users.
    Rahman MT; Dey K; Dimitra Pyrialakou V; Das S
    J Safety Res; 2023 Jun; 85():266-277. PubMed ID: 37330876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of pre-crash scenarios and contributing factors for autonomous vehicle crashes at intersections.
    Liu Q; Wang X; Liu S; Yu C; Glaser Y
    Accid Anal Prev; 2024 Feb; 195():107383. PubMed ID: 37984113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analyzing relationships between latent topics in autonomous vehicle crash narratives and crash severity using natural language processing techniques and explainable XGBoost.
    Li P; Chen S; Yue L; Xu Y; Noyce DA
    Accid Anal Prev; 2024 Aug; 203():107605. PubMed ID: 38743983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deriving functional safety (ISO 26262) S-parameters for vulnerable road users from national crash data.
    Krampe J; Junge M
    Accid Anal Prev; 2021 Feb; 150():105884. PubMed ID: 33360036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploratory analysis of automated vehicle crashes in California: A text analytics & hierarchical Bayesian heterogeneity-based approach.
    Boggs AM; Wali B; Khattak AJ
    Accid Anal Prev; 2020 Feb; 135():105354. PubMed ID: 31790970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study of machine learning classifiers for injury severity prediction of crashes involving three-wheeled motorized rickshaw.
    Ijaz M; Lan L; Zahid M; Jamal A
    Accid Anal Prev; 2021 May; 154():106094. PubMed ID: 33756425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating the reliability of automatically generated pedestrian and bicycle crash surrogates.
    Sengupta A; Ilgin Guler S; Gayah VV; Warchol S
    Accid Anal Prev; 2024 Aug; 203():107614. PubMed ID: 38781631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of collision types between automated and conventional vehicles using Bayesian probabilistic inferences.
    Novat N; Kidando E; Kutela B; Kitali AE
    J Safety Res; 2023 Feb; 84():251-260. PubMed ID: 36868654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seeing through eyes of Drivers: Space consideration in investigating visibility of Vulnerable road users involved in crashes from Driver's perspective.
    Kutela B; Oscar C; Kidando E; Mihayo M
    Accid Anal Prev; 2023 Nov; 192():107260. PubMed ID: 37573708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the mechanism of crashes with automated vehicles using statistical modeling approaches.
    Wang S; Li Z
    PLoS One; 2019; 14(3):e0214550. PubMed ID: 30921396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Causation mechanisms in car-to-vulnerable road user crashes: implications for active safety systems.
    Habibovic A; Davidsson J
    Accid Anal Prev; 2012 Nov; 49():493-500. PubMed ID: 23036427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vulnerable Road Users and Connected Autonomous Vehicles Interaction: A Survey.
    Reyes-Muñoz A; Guerrero-Ibáñez J
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Bayesian extreme value theory modelling framework to assess corridor-wide pedestrian safety using autonomous vehicle sensor data.
    Singh S; Ali Y; Haque MM
    Accid Anal Prev; 2024 Feb; 195():107416. PubMed ID: 38056025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The safety potential of enhanced lateral vehicle positioning.
    Sternlund S
    Traffic Inj Prev; 2021; 22(2):139-146. PubMed ID: 33556264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crash comparison of autonomous and conventional vehicles using pre-crash scenario typology.
    Liu Q; Wang X; Wu X; Glaser Y; He L
    Accid Anal Prev; 2021 Sep; 159():106281. PubMed ID: 34273622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Approaching autonomous driving with cautious optimism: analysis of road traffic injuries involving autonomous vehicles based on field test data.
    Ye W; Wang C; Chen F; Yan S; Li L
    Inj Prev; 2021 Feb; 27(1):42-47. PubMed ID: 31915269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.