These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34774536)

  • 41. New insight into enzymatic hydrolysis of peptides with site-specific amino acid d-isomerization.
    Yan L; Ke Y; Kan Y; Lin D; Yang J; He Y; Wu L
    Bioorg Chem; 2020 Dec; 105():104389. PubMed ID: 33120320
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Immobilized carboxypeptidase N. A potent bioreactor and specific adsorbent for peptides.
    Wang W; Hendriks DF; Scharpé SL
    Appl Biochem Biotechnol; 1994 Feb; 44(2):151-60. PubMed ID: 8017900
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An alternative mechanism for the catalysis of peptide bond formation by L/F transferase: substrate binding and orientation.
    Fung AW; Ebhardt HA; Abeysundara H; Moore J; Xu Z; Fahlman RP
    J Mol Biol; 2011 Jun; 409(4):617-29. PubMed ID: 21530538
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The amino acid sequence of the activation peptide of bovine pro-carboxypeptidase A.
    Wade RD; Hass GM; Kumar S; Walsh KA; Neurath H
    Biochimie; 1988 Sep; 70(9):1137-42. PubMed ID: 3147705
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Generation of enantiomeric amino acids during acid hydrolysis of peptides detected by the liquid chromatography/tandem mass spectroscopy.
    Miyamoto T; Sekine M; Ogawa T; Hidaka M; Homma H; Masaki H
    Chem Biodivers; 2010 Jun; 7(6):1644-50. PubMed ID: 20564678
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Detection of an anhydride intermediate in the carboxypeptidase A catalyzed hydrolysis of a peptide substrate by solid state NMR spectroscopy and its mechanistic implication.
    Lee HC; Ko YH; Baek SB; Kim DH
    Bioorg Med Chem Lett; 1998 Dec; 8(23):3379-84. PubMed ID: 9873738
    [TBL] [Abstract][Full Text] [Related]  

  • 47. THE N-TERMINAL SEQUENCE OF BOVINE CARBOXYPEPTIDASE A AND ITS RELATION OF ZYMOGEN ACTIVATION.
    KUMAR KS; CLEGG JB; WALSH KA
    Biochemistry; 1964 Nov; 3():1728-32. PubMed ID: 14235339
    [No Abstract]   [Full Text] [Related]  

  • 48. Enzymatic and chemical methods for manual C-terminal peptide sequencing.
    Casagranda F; Wilshire JF
    Methods Mol Biol; 1997; 64():243-57. PubMed ID: 9116827
    [No Abstract]   [Full Text] [Related]  

  • 49. Role of metal ions in goat carboxypeptidase A-catalysed hydrolysis of acyl peptides.
    Dua RD; Gupta KK
    Biochem Int; 1984 Sep; 9(3):379-89. PubMed ID: 6508815
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Carboxypeptidases in disease: insights from peptidomic studies.
    Sapio MR; Fricker LD
    Proteomics Clin Appl; 2014 Jun; 8(5-6):327-37. PubMed ID: 24470285
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [C-terminal amidation of acylamino acids and peptides using a transpeptidation method catalyzed by carboxypeptidase Y].
    Kapitannikov IuV; Popov AA; Shimbarevich EV; Rumsh LD; Antonov VK
    Bioorg Khim; 1988 Jun; 14(6):797-801. PubMed ID: 3190768
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Binding of ligands to the active site of carboxypeptidase A.
    Rees DC; Lipscomb WN
    Proc Natl Acad Sci U S A; 1981 Sep; 78(9):5455-9. PubMed ID: 6946483
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Substrate specificity of human carboxypeptidase A6.
    Lyons PJ; Fricker LD
    J Biol Chem; 2010 Dec; 285(49):38234-42. PubMed ID: 20855895
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modified amino acids and peptides as substrates for the intestinal peptide transporter PepT1.
    Meredith D; Temple CS; Guha N; Sword CJ; Boyd CA; Collier ID; Morgan KM; Bailey PD
    Eur J Biochem; 2000 Jun; 267(12):3723-8. PubMed ID: 10848990
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Amino acid side chain induced selectivity in the hydrolysis of peptides catalyzed by a Zr(IV)-substituted Wells-Dawson type polyoxometalate.
    Vanhaecht S; Absillis G; Parac-Vogt TN
    Dalton Trans; 2013 Nov; 42(43):15437-46. PubMed ID: 24018583
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Formation of peptide bonds by carboxypeptidase c from orange leaves.
    Steinke D; Schwarz A; Wandrey C; Kula MR
    Enzyme Microb Technol; 1991 Mar; 13(3):262-6. PubMed ID: 1367032
    [TBL] [Abstract][Full Text] [Related]  

  • 57. To protect peptide pharmaceuticals against peptidases.
    Rink R; Arkema-Meter A; Baudoin I; Post E; Kuipers A; Nelemans SA; Akanbi MH; Moll GN
    J Pharmacol Toxicol Methods; 2010; 61(2):210-8. PubMed ID: 20176117
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pancreatic carboxypeptidase hydrolysis of bile acid-amino conjugates: selective resistance of glycine and taurine amidates.
    Huijghebaert SM; Hofmann AF
    Gastroenterology; 1986 Feb; 90(2):306-15. PubMed ID: 2867000
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of N-terminal glutamic acid and glutamine on fragmentation of peptide ions.
    Godugu B; Neta P; Simón-Manso Y; Stein SE
    J Am Soc Mass Spectrom; 2010 Jul; 21(7):1169-76. PubMed ID: 20413325
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Application of carboxypeptidase Y and fast atom bombardment mass spectrometry for C-terminal sequencing of small peptides.
    Kim J; Kim K; Kim J; Ok JH; Kim J
    Biochem Mol Biol Int; 1994 May; 33(1):55-64. PubMed ID: 8081213
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.