BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34774599)

  • 21. Low-cost fabrication of paper-based microfluidic devices by one-step plotting.
    Nie J; Zhang Y; Lin L; Zhou C; Li S; Zhang L; Li J
    Anal Chem; 2012 Aug; 84(15):6331-5. PubMed ID: 22881397
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-step polymer screen-printing for microfluidic paper-based analytical device (μPAD) fabrication.
    Sameenoi Y; Nongkai PN; Nouanthavong S; Henry CS; Nacapricha D
    Analyst; 2014 Dec; 139(24):6580-8. PubMed ID: 25360590
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Screen printed paper-based diagnostic devices with polymeric inks.
    Sun JY; Cheng CM; Liao YC
    Anal Sci; 2015; 31(3):145-51. PubMed ID: 25765267
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pen-on-paper strategy for point-of-care testing: Rapid prototyping of fully written microfluidic biosensor.
    Li Z; Li F; Xing Y; Liu Z; You M; Li Y; Wen T; Qu Z; Ling Li X; Xu F
    Biosens Bioelectron; 2017 Dec; 98():478-485. PubMed ID: 28728008
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detecting proteins in microfluidic channels decorated with liquid crystal sensing dots.
    Aliño VJ; Sim PH; Choy WT; Fraser A; Yang KL
    Langmuir; 2012 Dec; 28(50):17571-7. PubMed ID: 23163482
    [TBL] [Abstract][Full Text] [Related]  

  • 26. T-shirt ink for one-step screen-printing of hydrophobic barriers for 2D- and 3D-microfluidic paper-based analytical devices.
    Sitanurak J; Fukana N; Wongpakdee T; Thepchuay Y; Ratanawimarnwong N; Amornsakchai T; Nacapricha D
    Talanta; 2019 Dec; 205():120113. PubMed ID: 31450420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A fully handwritten-on-paper copper nanoparticle ink-based electroanalytical sweat glucose biosensor fabricated using dual-step pencil and pen approach.
    Singh A; Hazarika A; Dutta L; Bhuyan A; Bhuyan M
    Anal Chim Acta; 2022 Sep; 1227():340257. PubMed ID: 36089304
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New Single-Layered Paper-Based Microfluidic Devices for the Analysis of Nitrite and Glucose Built via Deposition of Adhesive Tape.
    Yu P; Deng M; Yang Y
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31546594
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An integrated microfluidic flow-focusing platform for on-chip fabrication and filtration of cell-laden microgels.
    Mohamed MGA; Kheiri S; Islam S; Kumar H; Yang A; Kim K
    Lab Chip; 2019 Apr; 19(9):1621-1632. PubMed ID: 30896015
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays.
    Chiang CK; Kurniawan A; Kao CY; Wang MJ
    Talanta; 2019 Mar; 194():837-845. PubMed ID: 30609613
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of Three-dimensional Paper-based Microfluidic Devices for Immunoassays.
    Fernandes SC; Wilson DJ; Mace CR
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28362396
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Graphene nano-ink biosensor arrays on a microfluidic paper for multiplexed detection of metabolites.
    Labroo P; Cui Y
    Anal Chim Acta; 2014 Feb; 813():90-6. PubMed ID: 24528665
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing.
    Dungchai W; Chailapakul O; Henry CS
    Analyst; 2011 Jan; 136(1):77-82. PubMed ID: 20871884
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid and inexpensive process to fabricate paper based microfluidic devices using a cut and heat plastic lamination process.
    Kumawat N; Soman SS; Vijayavenkataraman S; Kumar S
    Lab Chip; 2022 Sep; 22(18):3377-3389. PubMed ID: 35801817
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation of monodispersed chitosan microspheres and in situ encapsulation of BSA in a co-axial microfluidic device.
    Xu JH; Li SW; Tostado C; Lan WJ; Luo GS
    Biomed Microdevices; 2009 Feb; 11(1):243-9. PubMed ID: 18810642
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection of an amphiphilic biosample in a paper microchannel based on length.
    Chen YT; Yang JT
    Biomed Microdevices; 2015; 17(3):9954. PubMed ID: 25926017
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of paper microfluidic devices using a toner laser printer.
    Ng JS; Hashimoto M
    RSC Adv; 2020 Aug; 10(50):29797-29807. PubMed ID: 35518222
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physicochemical Properties of Bovine Serum Albumin-Glucose and Bovine Serum Albumin-Mannose Conjugates Prepared by Pulsed Electric Fields Treatment.
    Jian W; Wang L; Wu L; Sun YM
    Molecules; 2018 Mar; 23(3):. PubMed ID: 29510477
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polymersome production on a microfluidic platform using pH sensitive block copolymers.
    Brown L; McArthur SL; Wright PC; Lewis A; Battaglia G
    Lab Chip; 2010 Aug; 10(15):1922-8. PubMed ID: 20480087
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrated microfluidic chip for on-line proteome analysis with combination of denaturing and rapid digestion of protein.
    Wei Z; Fan P; Jiao Y; Wang Y; Huang Y; Liu Z
    Anal Chim Acta; 2020 Mar; 1102():1-10. PubMed ID: 32043988
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.