These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 34774796)
1. Kinetic complexities of triacylglycerol accumulation in developing embryos from Camelina sativa provide evidence for multiple biosynthetic systems. Pollard M; Shachar-Hill Y J Biol Chem; 2022 Jan; 298(1):101396. PubMed ID: 34774796 [TBL] [Abstract][Full Text] [Related]
2. Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos. Bates PD; Durrett TP; Ohlrogge JB; Pollard M Plant Physiol; 2009 May; 150(1):55-72. PubMed ID: 19329563 [TBL] [Abstract][Full Text] [Related]
3. Lipid labeling from acetate or glycerol in cultured embryos of Camelina sativa seeds: A tale of two substrates. Pollard M; Delamarter D; Martin TM; Shachar-Hill Y Phytochemistry; 2015 Oct; 118():192-203. PubMed ID: 26265565 [TBL] [Abstract][Full Text] [Related]
4. Overexpression of the Phosphatidylcholine:DiacylglycerolCholinephosphotransferase (PDCT) gene increases carbon flux toward triacylglycerol (TAG) synthesis in Camelinasativa seeds. Abdullah HM; Pang N; Chilcoat B; Shachar-Hill Y; Schnell DJ; Dhankher OP Plant Physiol Biochem; 2024 Mar; 208():108470. PubMed ID: 38422576 [TBL] [Abstract][Full Text] [Related]
5. Phospholipase Dζ Enhances Diacylglycerol Flux into Triacylglycerol. Yang W; Wang G; Li J; Bates PD; Wang X; Allen DK Plant Physiol; 2017 May; 174(1):110-123. PubMed ID: 28325849 [TBL] [Abstract][Full Text] [Related]
6. Expression of a Lychee Yu XH; Cai Y; Chai J; Schwender J; Shanklin J Plant Physiol; 2019 Jul; 180(3):1351-1361. PubMed ID: 31123096 [TBL] [Abstract][Full Text] [Related]
7. The pathway of triacylglycerol synthesis through phosphatidylcholine in Arabidopsis produces a bottleneck for the accumulation of unusual fatty acids in transgenic seeds. Bates PD; Browse J Plant J; 2011 Nov; 68(3):387-99. PubMed ID: 21711402 [TBL] [Abstract][Full Text] [Related]
8. Identification of bottlenecks in the accumulation of cyclic fatty acids in camelina seed oil. Yu XH; Cahoon RE; Horn PJ; Shi H; Prakash RR; Cai Y; Hearney M; Chapman KD; Cahoon EB; Schwender J; Shanklin J Plant Biotechnol J; 2018 Apr; 16(4):926-938. PubMed ID: 28929610 [TBL] [Abstract][Full Text] [Related]
9. Lipid analysis of developing Camelina sativa seeds and cultured embryos. Pollard M; Martin TM; Shachar-Hill Y Phytochemistry; 2015 Oct; 118():23-32. PubMed ID: 26262674 [TBL] [Abstract][Full Text] [Related]
10. A fatty acid condensing enzyme from Physaria fendleri increases hydroxy fatty acid accumulation in transgenic oilseeds of Camelina sativa. Snapp AR; Kang J; Qi X; Lu C Planta; 2014 Sep; 240(3):599-610. PubMed ID: 25023632 [TBL] [Abstract][Full Text] [Related]
11. Labelling of glycerolipids in the cotyledons of developing oilseeds by [1-14C] acetate and [2-3H] glycerol. Slack CR; Roughan PG; Balasingham N Biochem J; 1978 Feb; 170(2):421-33. PubMed ID: 580379 [TBL] [Abstract][Full Text] [Related]
12. Camelina sativa phosphatidylcholine:diacylglycerol cholinephosphotransferase-catalyzed interconversion does not discriminate between substrates. Demski K; Jeppson S; Stymne S; Lager I Lipids; 2021 Nov; 56(6):591-602. PubMed ID: 34463366 [TBL] [Abstract][Full Text] [Related]
13. Triacylglycerol remodeling in Physaria fendleri indicates oil accumulation is dynamic and not a metabolic endpoint. Bhandari S; Bates PD Plant Physiol; 2021 Oct; 187(2):799-815. PubMed ID: 34608961 [TBL] [Abstract][Full Text] [Related]
14. Redirection of metabolic flux for high levels of omega-7 monounsaturated fatty acid accumulation in camelina seeds. Nguyen HT; Park H; Koster KL; Cahoon RE; Nguyen HT; Shanklin J; Clemente TE; Cahoon EB Plant Biotechnol J; 2015 Jan; 13(1):38-50. PubMed ID: 25065607 [TBL] [Abstract][Full Text] [Related]
15. Regulation of triacylglycerol biosynthesis in embryos and microsomal preparations from the developing seeds of Cuphea lanceolata. Bafor M; Jonsson L; Stobart AK; Stymne S Biochem J; 1990 Nov; 272(1):31-8. PubMed ID: 2264835 [TBL] [Abstract][Full Text] [Related]
16. Engineering Camelina sativa (L.) Crantz for enhanced oil and seed yields by combining diacylglycerol acyltransferase1 and glycerol-3-phosphate dehydrogenase expression. Chhikara S; Abdullah HM; Akbari P; Schnell D; Dhankher OP Plant Biotechnol J; 2018 May; 16(5):1034-1045. PubMed ID: 28975735 [TBL] [Abstract][Full Text] [Related]
17. Imaging heterogeneity of membrane and storage lipids in transgenic Camelina sativa seeds with altered fatty acid profiles. Horn PJ; Silva JE; Anderson D; Fuchs J; Borisjuk L; Nazarenus TJ; Shulaev V; Cahoon EB; Chapman KD Plant J; 2013 Oct; 76(1):138-50. PubMed ID: 23808562 [TBL] [Abstract][Full Text] [Related]
18. The phosphatidylcholine diacylglycerol cholinephosphotransferase is required for efficient hydroxy fatty acid accumulation in transgenic Arabidopsis. Hu Z; Ren Z; Lu C Plant Physiol; 2012 Apr; 158(4):1944-54. PubMed ID: 22371508 [TBL] [Abstract][Full Text] [Related]