These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 34774799)
1. Identification of small-molecule allosteric modulators that act as enhancers/disrupters of rhodopsin oligomerization. Getter T; Kemp A; Vinberg F; Palczewski K J Biol Chem; 2021 Dec; 297(6):101401. PubMed ID: 34774799 [TBL] [Abstract][Full Text] [Related]
2. Rod visual pigment optimizes active state to achieve efficient G protein activation as compared with cone visual pigments. Kojima K; Imamoto Y; Maeda R; Yamashita T; Shichida Y J Biol Chem; 2014 Feb; 289(8):5061-73. PubMed ID: 24375403 [TBL] [Abstract][Full Text] [Related]
3. Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones. Korenbrot JI; Rebrik TI Adv Exp Med Biol; 2002; 514():179-203. PubMed ID: 12596922 [TBL] [Abstract][Full Text] [Related]
4. Palmitoylation is a prerequisite for dimerization-dependent raftophilicity of rhodopsin. Seno K; Hayashi F J Biol Chem; 2017 Sep; 292(37):15321-15328. PubMed ID: 28747438 [TBL] [Abstract][Full Text] [Related]
5. Vitamin A activates rhodopsin and sensitizes it to ultraviolet light. Miyazono S; Isayama T; Delori FC; Makino CL Vis Neurosci; 2011 Nov; 28(6):485-97. PubMed ID: 22192505 [TBL] [Abstract][Full Text] [Related]
6. Raftophilic rhodopsin-clusters offer stochastic platforms for G protein signalling in retinal discs. Hayashi F; Saito N; Tanimoto Y; Okada K; Morigaki K; Seno K; Maekawa S Commun Biol; 2019; 2():209. PubMed ID: 31240247 [TBL] [Abstract][Full Text] [Related]
10. Physiological properties of rod photoreceptor cells in green-sensitive cone pigment knock-in mice. Sakurai K; Onishi A; Imai H; Chisaka O; Ueda Y; Usukura J; Nakatani K; Shichida Y J Gen Physiol; 2007 Jul; 130(1):21-40. PubMed ID: 17591985 [TBL] [Abstract][Full Text] [Related]
11. Functional comparisons of visual arrestins in rod photoreceptors of transgenic mice. Chan S; Rubin WW; Mendez A; Liu X; Song X; Hanson SM; Craft CM; Gurevich VV; Burns ME; Chen J Invest Ophthalmol Vis Sci; 2007 May; 48(5):1968-75. PubMed ID: 17460248 [TBL] [Abstract][Full Text] [Related]
12. Rhodopsin is spatially heterogeneously distributed in rod outer segment disk membranes. Buzhynskyy N; Salesse C; Scheuring S J Mol Recognit; 2011; 24(3):483-9. PubMed ID: 21504027 [TBL] [Abstract][Full Text] [Related]
13. Rhodopsin Trafficking and Mistrafficking: Signals, Molecular Components, and Mechanisms. Nemet I; Ropelewski P; Imanishi Y Prog Mol Biol Transl Sci; 2015; 132():39-71. PubMed ID: 26055054 [TBL] [Abstract][Full Text] [Related]
14. Light activation of one rhodopsin molecule causes the phosphorylation of hundreds of others. A reaction observed in electropermeabilized frog rod outer segments exposed to dim illumination. Binder BM; Biernbaum MS; Bownds MD J Biol Chem; 1990 Sep; 265(25):15333-40. PubMed ID: 2394724 [TBL] [Abstract][Full Text] [Related]
15. Phototransduction in Anuran Green Rods: Origins of Extra-Sensitivity. Astakhova LA; Novoselov AD; Ermolaeva ME; Firsov ML; Rotov AY Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948198 [TBL] [Abstract][Full Text] [Related]
16. Interaction between photoexcited rhodopsin and peripheral enzymes in frog retinal rods. Influence on the postmetarhodopsin II decay and phosphorylation rate of rhodopsin. Pfister C; Kühn H; Chabre M Eur J Biochem; 1983 Nov; 136(3):489-99. PubMed ID: 6315431 [TBL] [Abstract][Full Text] [Related]
17. Nanodomain organization of rhodopsin in native human and murine rod outer segment disc membranes. Whited AM; Park PS Biochim Biophys Acta; 2015 Jan; 1848(1 Pt A):26-34. PubMed ID: 25305340 [TBL] [Abstract][Full Text] [Related]
18. Two pathways of rod photoreceptor cell death induced by elevated cGMP. Wang T; Tsang SH; Chen J Hum Mol Genet; 2017 Jun; 26(12):2299-2306. PubMed ID: 28379353 [TBL] [Abstract][Full Text] [Related]
19. Phosphorylation of non-bleached rhodopsin in intact retinas and living frogs. Binder BM; O'Connor TM; Bownds MD; Arshavsky VY J Biol Chem; 1996 Aug; 271(33):19826-30. PubMed ID: 8702691 [TBL] [Abstract][Full Text] [Related]
20. Signaling states of rhodopsin in rod disk membranes lacking transducin βγ-complex. Lomonosova E; Kolesnikov AV; Kefalov VJ; Kisselev OG Invest Ophthalmol Vis Sci; 2012 Mar; 53(3):1225-33. PubMed ID: 22266510 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]