These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 34774997)

  • 21. Channel-wise attention enhanced and structural similarity constrained cycleGAN for effective synthetic CT generation from head and neck MRI images.
    Gong C; Huang Y; Luo M; Cao S; Gong X; Ding S; Yuan X; Zheng W; Zhang Y
    Radiat Oncol; 2024 Mar; 19(1):37. PubMed ID: 38486193
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of deep learning synthesis of synthetic CTs using clinical MRI inputs.
    Massa HA; Johnson JM; McMillan AB
    Phys Med Biol; 2020 Dec; 65(23):23NT03. PubMed ID: 33120371
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GAN for synthesizing CT from T2-weighted MRI data towards MR-guided radiation treatment.
    Ranjan A; Lalwani D; Misra R
    MAGMA; 2022 Jun; 35(3):449-457. PubMed ID: 34741702
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthetic CT Generation Based on T2 Weighted MRI of Nasopharyngeal Carcinoma (NPC) Using a Deep Convolutional Neural Network (DCNN).
    Wang Y; Liu C; Zhang X; Deng W
    Front Oncol; 2019; 9():1333. PubMed ID: 31850218
    [No Abstract]   [Full Text] [Related]  

  • 25. Pixelwise Gradient Model with GAN for Virtual Contrast Enhancement in MRI Imaging.
    Cheng KH; Li W; Lee FK; Li T; Cai J
    Cancers (Basel); 2024 Feb; 16(5):. PubMed ID: 38473363
    [No Abstract]   [Full Text] [Related]  

  • 26. The contrast-enhanced MRI can be substituted by unenhanced MRI in identifying and automatically segmenting primary nasopharyngeal carcinoma with the aid of deep learning models: An exploratory study in large-scale population of endemic area.
    Deng Y; Li C; Lv X; Xia W; Shen L; Jing B; Li B; Guo X; Sun Y; Xie C; Ke L
    Comput Methods Programs Biomed; 2022 Apr; 217():106702. PubMed ID: 35228147
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesizing High b-Value Diffusion-Weighted Imaging of Gastric Cancer Using an Improved Vision Transformer CycleGAN.
    Hu C; Bian C; Cao N; Zhou H; Guo B
    Bioengineering (Basel); 2024 Aug; 11(8):. PubMed ID: 39199763
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI.
    Gong E; Pauly JM; Wintermark M; Zaharchuk G
    J Magn Reson Imaging; 2018 Aug; 48(2):330-340. PubMed ID: 29437269
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep-learning-based generation of synthetic 6-minute MRI from 2-minute MRI for use in head and neck cancer radiotherapy.
    Wahid KA; Xu J; El-Habashy D; Khamis Y; Abobakr M; McDonald B; O' Connell N; Thill D; Ahmed S; Sharafi CS; Preston K; Salzillo TC; Mohamed ASR; He R; Cho N; Christodouleas J; Fuller CD; Naser MA
    Front Oncol; 2022; 12():975902. PubMed ID: 36425548
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Magnetic resonance image (MRI) synthesis from brain computed tomography (CT) images based on deep learning methods for magnetic resonance (MR)-guided radiotherapy.
    Li W; Li Y; Qin W; Liang X; Xu J; Xiong J; Xie Y
    Quant Imaging Med Surg; 2020 Jun; 10(6):1223-1236. PubMed ID: 32550132
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep Learning to Simulate Contrast-enhanced Breast MRI of Invasive Breast Cancer.
    Chung M; Calabrese E; Mongan J; Ray KM; Hayward JH; Kelil T; Sieberg R; Hylton N; Joe BN; Lee AY
    Radiology; 2023 Mar; 306(3):e213199. PubMed ID: 36378030
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unsupervised pseudo CT generation using heterogenous multicentric CT/MR images and CycleGAN: Dosimetric assessment for 3D conformal radiotherapy.
    Jabbarpour A; Mahdavi SR; Vafaei Sadr A; Esmaili G; Shiri I; Zaidi H
    Comput Biol Med; 2022 Apr; 143():105277. PubMed ID: 35123139
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of fully automated myocardial segmentation techniques in native and contrast-enhanced T1-mapping cardiovascular magnetic resonance images using fully convolutional neural networks.
    Farrag NA; Lochbihler A; White JA; Ukwatta E
    Med Phys; 2021 Jan; 48(1):215-226. PubMed ID: 33131085
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep Learning Approach for Generating MRA Images From 3D Quantitative Synthetic MRI Without Additional Scans.
    Fujita S; Hagiwara A; Otsuka Y; Hori M; Takei N; Hwang KP; Irie R; Andica C; Kamagata K; Akashi T; Kunishima Kumamaru K; Suzuki M; Wada A; Abe O; Aoki S
    Invest Radiol; 2020 Apr; 55(4):249-256. PubMed ID: 31977603
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of texture analysis based on contrast-enhanced MRI to predict treatment response to chemoradiotherapy in nasopharyngeal carcinoma.
    Liu J; Mao Y; Li Z; Zhang D; Zhang Z; Hao S; Li B
    J Magn Reson Imaging; 2016 Aug; 44(2):445-55. PubMed ID: 26778191
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Survival rate prediction of nasopharyngeal carcinoma patients based on MRI and gene expression using a deep neural network.
    Zhang Q; Wu G; Yang Q; Dai G; Li T; Chen P; Li J; Huang W
    Cancer Sci; 2023 Apr; 114(4):1596-1605. PubMed ID: 36541519
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-resolution 3T to 7T ADC map synthesis with a hybrid CNN-transformer model.
    Eidex Z; Wang J; Safari M; Elder E; Wynne J; Wang T; Shu HK; Mao H; Yang X
    Med Phys; 2024 Jun; 51(6):4380-4388. PubMed ID: 38630982
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep Learning for Automated Contouring of Primary Tumor Volumes by MRI for Nasopharyngeal Carcinoma.
    Lin L; Dou Q; Jin YM; Zhou GQ; Tang YQ; Chen WL; Su BA; Liu F; Tao CJ; Jiang N; Li JY; Tang LL; Xie CM; Huang SM; Ma J; Heng PA; Wee JTS; Chua MLK; Chen H; Sun Y
    Radiology; 2019 Jun; 291(3):677-686. PubMed ID: 30912722
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reconstruction of multicontrast MR images through deep learning.
    Do WJ; Seo S; Han Y; Ye JC; Choi SH; Park SH
    Med Phys; 2020 Mar; 47(3):983-997. PubMed ID: 31889314
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of magnetic resonance images from computed tomography data using convolutional neural network with contextual loss function.
    Li Z; Huang X; Zhang Z; Liu L; Wang F; Li S; Gao S; Xia J
    Quant Imaging Med Surg; 2022 Jun; 12(6):3151-3169. PubMed ID: 35655819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.