BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 34775267)

  • 1. Inner hair cell stereocilia displacement in response to focal stimulation of the basilar membrane in the ex vivo gerbil cochlea.
    Zosuls A; Rupprecht LC; Mountain DC
    Hear Res; 2021 Dec; 412():108372. PubMed ID: 34775267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Traveling waves on the organ of corti of the chinchilla cochlea: spatial trajectories of inner hair cell depolarization inferred from responses of auditory-nerve fibers.
    Temchin AN; Recio-Spinoso A; Cai H; Ruggero MA
    J Neurosci; 2012 Aug; 32(31):10522-9. PubMed ID: 22855802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Velocity and displacement coupling of mammalian inner hair cells and the mechanical resonance of the free-standing stereocilia.
    Patuzzi R; Yates GK
    ORL J Otorhinolaryngol Relat Spec; 1986; 48(2):81-6. PubMed ID: 3703534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency-dependent self-induced bias of the basilar membrane and its potential for controlling sensitivity and tuning in the mammalian cochlea.
    LePage EL
    J Acoust Soc Am; 1987 Jul; 82(1):139-54. PubMed ID: 3624635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electromotile hearing: evidence from basilar membrane motion and otoacoustic emissions.
    Nuttall AL; Ren T
    Hear Res; 1995 Dec; 92(1-2):170-7. PubMed ID: 8647740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The reticular lamina and basilar membrane vibrations in the transverse direction in the basal turn of the living gerbil cochlea.
    He W; Burwood G; Porsov EV; Fridberger A; Nuttall AL; Ren T
    Sci Rep; 2022 Nov; 12(1):19810. PubMed ID: 36396720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrically evoked basilar membrane motion.
    Xue S; Mountain DC; Hubbard AE
    J Acoust Soc Am; 1995 May; 97(5 Pt 1):3030-41. PubMed ID: 7759643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How are inner hair cells stimulated? Evidence for multiple mechanical drives.
    Guinan JJ
    Hear Res; 2012 Oct; 292(1-2):35-50. PubMed ID: 22959529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea.
    Lee HY; Raphael PD; Park J; Ellerbee AK; Applegate BE; Oghalai JS
    Proc Natl Acad Sci U S A; 2015 Mar; 112(10):3128-33. PubMed ID: 25737536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-tip auditory-nerve responses that are suppressed by low-frequency bias tones originate from reticular lamina motion.
    Nam H; Guinan JJ
    Hear Res; 2018 Feb; 358():1-9. PubMed ID: 29276975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reverse wave propagation in the cochlea.
    He W; Fridberger A; Porsov E; Grosh K; Ren T
    Proc Natl Acad Sci U S A; 2008 Feb; 105(7):2729-33. PubMed ID: 18272498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Longitudinal pattern of basilar membrane vibration in the sensitive cochlea.
    Ren T
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):17101-6. PubMed ID: 12461165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea.
    Murugasu E; Russell IJ
    J Neurosci; 1996 Jan; 16(1):325-32. PubMed ID: 8613799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amplification and Suppression of Traveling Waves along the Mouse Organ of Corti: Evidence for Spatial Variation in the Longitudinal Coupling of Outer Hair Cell-Generated Forces.
    Dewey JB; Applegate BE; Oghalai JS
    J Neurosci; 2019 Mar; 39(10):1805-1816. PubMed ID: 30651330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wever and Lawrence revisited: effects of nulling basilar membrane movement on concomitant whole-nerve action potential.
    Offut G
    J Aud Res; 1986 Jan; 26(1):43-54. PubMed ID: 3610990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-Dimensional Cochlear Micromechanics Measured In Vivo Demonstrate Radial Tuning within the Mouse Organ of Corti.
    Lee HY; Raphael PD; Xia A; Kim J; Grillet N; Applegate BE; Ellerbee Bowden AK; Oghalai JS
    J Neurosci; 2016 Aug; 36(31):8160-73. PubMed ID: 27488636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basilar membrane vibration is not involved in the reverse propagation of otoacoustic emissions.
    He W; Ren T
    Sci Rep; 2013; 3():1874. PubMed ID: 23695199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sound Induced Vibrations Deform the Organ of Corti Complex in the Low-Frequency Apical Region of the Gerbil Cochlea for Normal Hearing : Sound Induced Vibrations Deform the Organ of Corti Complex.
    Meenderink SWF; Lin X; Park BH; Dong W
    J Assoc Res Otolaryngol; 2022 Oct; 23(5):579-591. PubMed ID: 35798901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent developments in cochlear physiology.
    Lippe WR
    Ear Hear; 1986 Aug; 7(4):233-9. PubMed ID: 3743914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The interplay of organ-of-Corti vibrational modes, not tectorial- membrane resonance, sets outer-hair-cell stereocilia phase to produce cochlear amplification.
    Guinan JJ
    Hear Res; 2020 Sep; 395():108040. PubMed ID: 32784038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.