These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34775610)

  • 1. Limits to photosynthesis: seasonal shifts in supply and demand for CO
    Stangl ZR; Tarvainen L; Wallin G; Marshall JD
    New Phytol; 2022 Feb; 233(3):1108-1120. PubMed ID: 34775610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diurnal variation in mesophyll conductance and its influence on modelled water-use efficiency in a mature boreal Pinus sylvestris stand.
    Stangl ZR; Tarvainen L; Wallin G; Ubierna N; Räntfors M; Marshall JD
    Photosynth Res; 2019 Jul; 141(1):53-63. PubMed ID: 31123952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stomatal, mesophyll and biochemical limitations to photosynthesis and their relationship with leaf structure over an elevation gradient in two conifers.
    Guo J; Beverly DP; Ewers BE; Williams DG
    Photosynth Res; 2023 Sep; 157(2-3):85-101. PubMed ID: 37212937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton.
    Singh SK; Badgujar G; Reddy VR; Fleisher DH; Bunce JA
    J Plant Physiol; 2013 Jun; 170(9):801-13. PubMed ID: 23384758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seasonal evolution of diffusional limitations and photosynthetic capacity in olive under drought.
    Diaz-Espejo A; Nicolás E; Fernández JE
    Plant Cell Environ; 2007 Aug; 30(8):922-33. PubMed ID: 17617820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contrasting acclimation abilities of two dominant boreal conifers to elevated CO
    Kurepin LV; Stangl ZR; Ivanov AG; Bui V; Mema M; Hüner NPA; Öquist G; Way D; Hurry V
    Plant Cell Environ; 2018 Jun; 41(6):1331-1345. PubMed ID: 29411877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two dominant boreal conifers use contrasting mechanisms to reactivate photosynthesis in the spring.
    Yang Q; Blanco NE; Hermida-Carrera C; Lehotai N; Hurry V; Strand Å
    Nat Commun; 2020 Jan; 11(1):128. PubMed ID: 31913273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired leaf CO2 diffusion mediates Cd-induced inhibition of photosynthesis in the Zn/Cd hyperaccumulator Picris divaricata.
    Tang L; Ying RR; Jiang D; Zeng XW; Morel JL; Tang YT; Qiu RL
    Plant Physiol Biochem; 2013 Dec; 73():70-6. PubMed ID: 24077231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal optimum of photosynthesis is controlled by stomatal conductance and does not acclimate across an urban thermal gradient in six subtropical tree species.
    Kullberg AT; Slot M; Feeley KJ
    Plant Cell Environ; 2023 Mar; 46(3):831-849. PubMed ID: 36597283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impacts of seasonal air and soil temperatures on photosynthesis in Scots pine trees.
    Strand M; Lundmark T; Söderbergh I; Mellander PE
    Tree Physiol; 2002 Aug; 22(12):839-47. PubMed ID: 12184973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responses of photosynthesis and component processes to drought and temperature stress: are Mediterranean trees fit for climate change?
    Sperlich D; Chang CT; Peñuelas J; Sabaté S
    Tree Physiol; 2019 Dec; 39(11):1783-1805. PubMed ID: 31553458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell wall properties in Oryza sativa influence mesophyll CO
    Ellsworth PV; Ellsworth PZ; Koteyeva NK; Cousins AB
    New Phytol; 2018 Jul; 219(1):66-76. PubMed ID: 29676468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature responses of photosynthetic capacity parameters were not affected by foliar nitrogen content in mature Pinus sylvestris.
    Tarvainen L; Lutz M; Räntfors M; Näsholm T; Wallin G
    Physiol Plant; 2018 Mar; 162(3):370-378. PubMed ID: 28718915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupled response of stomatal and mesophyll conductance to light enhances photosynthesis of shade leaves under sunflecks.
    Campany CE; Tjoelker MG; von Caemmerer S; Duursma RA
    Plant Cell Environ; 2016 Dec; 39(12):2762-2773. PubMed ID: 27726150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disentangling the contributions of ontogeny and water stress to photosynthetic limitations in almond trees.
    Egea G; González-Real MM; Baille A; Nortes PA; Diaz-Espejo A
    Plant Cell Environ; 2011 Jun; 34(6):962-979. PubMed ID: 21388414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stomatal, mesophyll conductance, and biochemical limitations to photosynthesis during induction.
    Sakoda K; Yamori W; Groszmann M; Evans JR
    Plant Physiol; 2021 Feb; 185(1):146-160. PubMed ID: 33631811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Similar temperature dependence of photosynthetic parameters in sun and shade leaves of three tropical tree species.
    Hernández GG; Winter K; Slot M
    Tree Physiol; 2020 May; 40(5):637-651. PubMed ID: 32083285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesophyll conductance limitation of photosynthesis in poplar under elevated ozone.
    Xu Y; Feng Z; Shang B; Dai L; Uddling J; Tarvainen L
    Sci Total Environ; 2019 Mar; 657():136-145. PubMed ID: 30537576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field and controlled environment measurements show strong seasonal acclimation in photosynthesis and respiration potential in boreal Scots pine.
    Kolari P; Chan T; Porcar-Castell A; Bäck J; Nikinmaa E; Juurola E
    Front Plant Sci; 2014; 5():717. PubMed ID: 25566291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Height-related decreases in mesophyll conductance, leaf photosynthesis and compensating adjustments associated with leaf nitrogen concentrations in Pinus densiflora.
    Han Q
    Tree Physiol; 2011 Sep; 31(9):976-84. PubMed ID: 21467050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.