These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 34775618)

  • 41. Molecular mechanisms of boron transport in plants: involvement of Arabidopsis NIP5;1 and NIP6;1.
    Miwa K; Tanaka M; Kamiya T; Fujiwara T
    Adv Exp Med Biol; 2010; 679():83-96. PubMed ID: 20666226
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Expression of SofLAC, a new laccase in sugarcane, restores lignin content but not S:G ratio of Arabidopsis lac17 mutant.
    Cesarino I; Araújo P; Sampaio Mayer JL; Vicentini R; Berthet S; Demedts B; Vanholme B; Boerjan W; Mazzafera P
    J Exp Bot; 2013 Apr; 64(6):1769-81. PubMed ID: 23418623
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Defining the Diverse Cell Populations Contributing to Lignification in Arabidopsis Stems.
    Smith RA; Schuetz M; Karlen SD; Bird D; Tokunaga N; Sato Y; Mansfield SD; Ralph J; Samuels AL
    Plant Physiol; 2017 Jun; 174(2):1028-1036. PubMed ID: 28416705
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Abscisic acid and transpiration rate are involved in the response to boron toxicity in Arabidopsis plants.
    Macho-Rivero MÁ; Camacho-Cristóbal JJ; Herrera-Rodríguez MB; Müller M; Munné-Bosch S; González-Fontes A
    Physiol Plant; 2017 May; 160(1):21-32. PubMed ID: 27935108
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of boron-deficiency-responsive microRNAs in Citrus sinensis roots by Illumina sequencing.
    Lu YB; Yang LT; Qi YP; Li Y; Li Z; Chen YB; Huang ZR; Chen LS
    BMC Plant Biol; 2014 May; 14():123. PubMed ID: 24885979
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nodulin Intrinsic Protein 7;1 Is a Tapetal Boric Acid Channel Involved in Pollen Cell Wall Formation.
    Routray P; Li T; Yamasaki A; Yoshinari A; Takano J; Choi WG; Sams CE; Roberts DM
    Plant Physiol; 2018 Nov; 178(3):1269-1283. PubMed ID: 30266747
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Xyloglucan Endotransglucosylase/Hydrolase Gene
    Zhang C; He M; Jiang Z; Liu L; Pu J; Zhang W; Wang S; Xu F
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163179
    [TBL] [Abstract][Full Text] [Related]  

  • 48.
    Baldacci-Cresp F; Le Roy J; Huss B; Lion C; Créach A; Spriet C; Duponchel L; Biot C; Baucher M; Hawkins S; Neutelings G
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32847109
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Insights into the role of phytohormones regulating pAtNIP5;1 activity and boron transport in Arabidopsis thaliana.
    Gómez-Soto D; Galván S; Rosales E; Bienert P; Abreu I; Bonilla I; Bolaños L; Reguera M
    Plant Sci; 2019 Oct; 287():110198. PubMed ID: 31481193
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Arbuscular mycorrhizal symbiosis improves tolerance of Carrizo citrange to excess boron supply by reducing leaf B concentration and toxicity in the leaves and roots.
    Simón-Grao S; Nieves M; Martínez-Nicolás JJ; Alfosea-Simón M; Cámara-Zapata JM; Fernández-Zapata JC; García-Sánchez F
    Ecotoxicol Environ Saf; 2019 May; 173():322-330. PubMed ID: 30784795
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular and physiological changes in response to salt stress in Citrus macrophylla W plants overexpressing Arabidopsis CBF3/DREB1A.
    Alvarez-Gerding X; Espinoza C; Inostroza-Blancheteau C; Arce-Johnson P
    Plant Physiol Biochem; 2015 Jul; 92():71-80. PubMed ID: 25914135
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oryza sativa class III peroxidase (OsPRX38) overexpression in Arabidopsis thaliana reduces arsenic accumulation due to apoplastic lignification.
    Kidwai M; Dhar YV; Gautam N; Tiwari M; Ahmad IZ; Asif MH; Chakrabarty D
    J Hazard Mater; 2019 Jan; 362():383-393. PubMed ID: 30245406
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A molecular framework for the inhibition of Arabidopsis root growth in response to boron toxicity.
    Aquea F; Federici F; Moscoso C; Vega A; Jullian P; Haseloff J; Arce-Johnson P
    Plant Cell Environ; 2012 Apr; 35(4):719-34. PubMed ID: 21988710
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Non-cell-autonomous postmortem lignification of tracheary elements in Zinnia elegans.
    Pesquet E; Zhang B; Gorzsás A; Puhakainen T; Serk H; Escamez S; Barbier O; Gerber L; Courtois-Moreau C; Alatalo E; Paulin L; Kangasjärvi J; Sundberg B; Goffner D; Tuominen H
    Plant Cell; 2013 Apr; 25(4):1314-28. PubMed ID: 23572543
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A non-secreted plant defensin AtPDF2.6 conferred cadmium tolerance via its chelation in Arabidopsis.
    Luo JS; Gu T; Yang Y; Zhang Z
    Plant Mol Biol; 2019 Jul; 100(4-5):561-569. PubMed ID: 31053987
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Boron Toxicity and Deficiency in Agricultural Plants.
    Brdar-Jokanović M
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32093172
    [TBL] [Abstract][Full Text] [Related]  

  • 57. MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis.
    Wang CY; Zhang S; Yu Y; Luo YC; Liu Q; Ju C; Zhang YC; Qu LH; Lucas WJ; Wang X; Chen YQ
    Plant Biotechnol J; 2014 Oct; 12(8):1132-42. PubMed ID: 24975689
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mathematical modeling and experimental validation of the spatial distribution of boron in the root of Arabidopsis thaliana identify high boron accumulation in the tip and predict a distinct root tip uptake function.
    Shimotohno A; Sotta N; Sato T; De Ruvo M; Marée AF; Grieneisen VA; Fujiwara T
    Plant Cell Physiol; 2015 Apr; 56(4):620-30. PubMed ID: 25670713
    [TBL] [Abstract][Full Text] [Related]  

  • 59. VvBOR1, the grapevine ortholog of AtBOR1, encodes an efflux boron transporter that is differentially expressed throughout reproductive development of Vitis vinifera L.
    Pérez-Castro R; Kasai K; Gainza-Cortés F; Ruiz-Lara S; Casaretto JA; Peña-Cortés H; Tapia J; Fujiwara T; González E
    Plant Cell Physiol; 2012 Feb; 53(2):485-94. PubMed ID: 22247248
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The Arabidopsis-related halophyte Thellungiella halophila: boron tolerance via boron complexation with metabolites?
    Lamdan NL; Attia Z; Moran N; Moshelion M
    Plant Cell Environ; 2012 Apr; 35(4):735-46. PubMed ID: 21999349
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.