BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 34775987)

  • 1. Lamin C is required to establish genome organization after mitosis.
    Wong X; Hoskins VE; Melendez-Perez AJ; Harr JC; Gordon M; Reddy KL
    Genome Biol; 2021 Nov; 22(1):305. PubMed ID: 34775987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depletion of lamins B1 and B2 promotes chromatin mobility and induces differential gene expression by a mesoscale-motion-dependent mechanism.
    Pujadas Liwag EM; Wei X; Acosta N; Carter LM; Yang J; Almassalha LM; Jain S; Daneshkhah A; Rao SSP; Seker-Polat F; MacQuarrie KL; Ibarra J; Agrawal V; Aiden EL; Kanemaki MT; Backman V; Adli M
    Genome Biol; 2024 Mar; 25(1):77. PubMed ID: 38519987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interplay of lamin A and lamin B LADs on the radial positioning of chromatin.
    Forsberg F; Brunet A; Ali TML; Collas P
    Nucleus; 2019 Dec; 10(1):7-20. PubMed ID: 30663495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lamins Organize the Global Three-Dimensional Genome from the Nuclear Periphery.
    Zheng X; Hu J; Yue S; Kristiani L; Kim M; Sauria M; Taylor J; Kim Y; Zheng Y
    Mol Cell; 2018 Sep; 71(5):802-815.e7. PubMed ID: 30201095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lamins in the nuclear interior - life outside the lamina.
    Naetar N; Ferraioli S; Foisner R
    J Cell Sci; 2017 Jul; 130(13):2087-2096. PubMed ID: 28668931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong interactions between highly dynamic lamina-associated domains and the nuclear envelope stabilize the 3D architecture of Drosophila interphase chromatin.
    Tolokh IS; Kinney NA; Sharakhov IV; Onufriev AV
    Epigenetics Chromatin; 2023 May; 16(1):21. PubMed ID: 37254161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear pore protein TPR associates with lamin B1 and affects nuclear lamina organization and nuclear pore distribution.
    Fišerová J; Maninová M; Sieger T; Uhlířová J; Šebestová L; Efenberková M; Čapek M; Fišer K; Hozák P
    Cell Mol Life Sci; 2019 Jun; 76(11):2199-2216. PubMed ID: 30762072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear lamins A and B1: different pathways of assembly during nuclear envelope formation in living cells.
    Moir RD; Yoon M; Khuon S; Goldman RD
    J Cell Biol; 2000 Dec; 151(6):1155-68. PubMed ID: 11121432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lamina-associated domains: peripheral matters and internal affairs.
    Briand N; Collas P
    Genome Biol; 2020 Apr; 21(1):85. PubMed ID: 32241294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laminopathy-causing lamin A mutations reconfigure lamina-associated domains and local spatial chromatin conformation.
    Briand N; Collas P
    Nucleus; 2018 Jan; 9(1):216-226. PubMed ID: 29517398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitotic phosphorylation of SUN1 loosens its connection with the nuclear lamina while the LINC complex remains intact.
    Patel JT; Bottrill A; Prosser SL; Jayaraman S; Straatman K; Fry AM; Shackleton S
    Nucleus; 2014; 5(5):462-73. PubMed ID: 25482198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct features of lamin A-interacting chromatin domains mapped by ChIP-sequencing from sonicated or micrococcal nuclease-digested chromatin.
    Lund EG; Duband-Goulet I; Oldenburg A; Buendia B; Collas P
    Nucleus; 2015; 6(1):30-9. PubMed ID: 25602132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lamin A/C and Emerin depletion impacts chromatin organization and dynamics in the interphase nucleus.
    Ranade D; Pradhan R; Jayakrishnan M; Hegde S; Sengupta K
    BMC Mol Cell Biol; 2019 May; 20(1):11. PubMed ID: 31117946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single molecule analysis of lamin dynamics.
    Serebryannyy LA; Ball DA; Karpova TS; Misteli T
    Methods; 2019 Mar; 157():56-65. PubMed ID: 30145357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of lamins in 3D genome organization and global gene expression.
    Kim Y; Zheng X; Zheng Y
    Nucleus; 2019 Dec; 10(1):33-41. PubMed ID: 30755082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. To be or not be (in the LAD): emerging roles of lamin proteins in transcriptional regulation.
    Nazer E
    Biochem Soc Trans; 2022 Apr; 50(2):1035-1044. PubMed ID: 35437578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Choreography of lamina-associated domains: structure meets dynamics.
    Alagna NS; Thomas TI; Wilson KL; Reddy KL
    FEBS Lett; 2023 Nov; 597(22):2806-2822. PubMed ID: 37953467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concentric organization of A- and B-type lamins predicts their distinct roles in the spatial organization and stability of the nuclear lamina.
    Nmezi B; Xu J; Fu R; Armiger TJ; Rodriguez-Bey G; Powell JS; Ma H; Sullivan M; Tu Y; Chen NY; Young SG; Stolz DB; Dahl KN; Liu Y; Padiath QS
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4307-4315. PubMed ID: 30765529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organization and modulation of nuclear lamina structure.
    Gerace L; Comeau C; Benson M
    J Cell Sci Suppl; 1984; 1():137-60. PubMed ID: 6597817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosomal aneuploidies induced upon Lamin B2 depletion are mislocalized in the interphase nucleus.
    Ranade D; Koul S; Thompson J; Prasad KB; Sengupta K
    Chromosoma; 2017 Mar; 126(2):223-244. PubMed ID: 26921073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.