These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34776214)

  • 1. Light activation and deactivation of Cas9 for DNA repair studies.
    Zou RS; Ha T
    Methods Enzymol; 2021; 661():219-249. PubMed ID: 34776214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. INDEL detection, the 'Achilles heel' of precise genome editing: a survey of methods for accurate profiling of gene editing induced indels.
    Bennett EP; Petersen BL; Johansen IE; Niu Y; Yang Z; Chamberlain CA; Met Ö; Wandall HH; Frödin M
    Nucleic Acids Res; 2020 Dec; 48(21):11958-11981. PubMed ID: 33170255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in
    Zhang WW; Matlashewski G
    mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Target binding and residence: a new determinant of DNA double-strand break repair pathway choice in CRISPR/Cas9 genome editing.
    Feng Y; Liu S; Chen R; Xie A
    J Zhejiang Univ Sci B; 2021 Jan; 22(1):73-86. PubMed ID: 33448189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Targeted and Tuneable DNA Damage Tool Using CRISPR/Cas9.
    Emmanouilidis I; Fili N; Cook AW; Hari-Gupta Y; Dos Santos Á; Wang L; Martin-Fernandez ML; Ellis PJI; Toseland CP
    Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33672015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Target residence of Cas9-sgRNA influences DNA double-strand break repair pathway choices in CRISPR/Cas9 genome editing.
    Liu SC; Feng YL; Sun XN; Chen RD; Liu Q; Xiao JJ; Zhang JN; Huang ZC; Xiang JF; Chen GQ; Yang Y; Lou C; Li HD; Cai Z; Xu SM; Lin H; Xie AY
    Genome Biol; 2022 Aug; 23(1):165. PubMed ID: 35915475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methods Favoring Homology-Directed Repair Choice in Response to CRISPR/Cas9 Induced-Double Strand Breaks.
    Yang H; Ren S; Yu S; Pan H; Li T; Ge S; Zhang J; Xia N
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32899704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double stranded DNA breaks and genome editing trigger loss of ribosomal protein RPS27A.
    Riepe C; Zelin E; Frankino PA; Meacham ZA; Fernandez SG; Ingolia NT; Corn JE
    FEBS J; 2022 Jun; 289(11):3101-3114. PubMed ID: 34914197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precision digital mapping of endogenous and induced genomic DNA breaks by INDUCE-seq.
    Dobbs FM; van Eijk P; Fellows MD; Loiacono L; Nitsch R; Reed SH
    Nat Commun; 2022 Jul; 13(1):3989. PubMed ID: 35810156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA Repair Pathway Choices in CRISPR-Cas9-Mediated Genome Editing.
    Xue C; Greene EC
    Trends Genet; 2021 Jul; 37(7):639-656. PubMed ID: 33896583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Twin prime editor: seamless repair without damage.
    Awan MJA; Ali Z; Amin I; Mansoor S
    Trends Biotechnol; 2022 Apr; 40(4):374-376. PubMed ID: 35153078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand DNA Breaks.
    Brinkman EK; Chen T; de Haas M; Holland HA; Akhtar W; van Steensel B
    Mol Cell; 2018 Jun; 70(5):801-813.e6. PubMed ID: 29804829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal and rheostatic control of genome editing with a chemically-inducible Cas9.
    Wei CT; Maly DJ; Fowler DM
    Methods Enzymol; 2020; 633():119-141. PubMed ID: 32046842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precise and heritable genome editing in evolutionarily diverse nematodes using TALENs and CRISPR/Cas9 to engineer insertions and deletions.
    Lo TW; Pickle CS; Lin S; Ralston EJ; Gurling M; Schartner CM; Bian Q; Doudna JA; Meyer BJ
    Genetics; 2013 Oct; 195(2):331-48. PubMed ID: 23934893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precision genome editing in the CRISPR era.
    Salsman J; Dellaire G
    Biochem Cell Biol; 2017 Apr; 95(2):187-201. PubMed ID: 28177771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Host Double Strand Break Repair Generates HIV-1 Strains Resistant to CRISPR/Cas9.
    Yoder KE; Bundschuh R
    Sci Rep; 2016 Jul; 6():29530. PubMed ID: 27404981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene Replacement by Intron Targeting with CRISPR-Cas9.
    Li J; Meng X; Li J; Gao C
    Methods Mol Biol; 2019; 1917():285-296. PubMed ID: 30610644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Very fast CRISPR on demand.
    Liu Y; Zou RS; He S; Nihongaki Y; Li X; Razavi S; Wu B; Ha T
    Science; 2020 Jun; 368(6496):1265-1269. PubMed ID: 32527834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair.
    Jasin M; Haber JE
    DNA Repair (Amst); 2016 Aug; 44():6-16. PubMed ID: 27261202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of genetically modified rat models via the CRISPR/Cas9 technology.
    Liu MZ; Wang LR; Li YM; Ma XY; Han HH; Li DL
    Yi Chuan; 2023 Jan; 45(1):78-87. PubMed ID: 36927640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.