These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34776837)

  • 1. Characterization of Generalizability of Spike Timing Dependent Plasticity Trained Spiking Neural Networks.
    Chakraborty B; Mukhopadhyay S
    Front Neurosci; 2021; 15():695357. PubMed ID: 34776837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Training Deep Spiking Convolutional Neural Networks With STDP-Based Unsupervised Pre-training Followed by Supervised Fine-Tuning.
    Lee C; Panda P; Srinivasan G; Roy K
    Front Neurosci; 2018; 12():435. PubMed ID: 30123103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneous recurrent spiking neural network for spatio-temporal classification.
    Chakraborty B; Mukhopadhyay S
    Front Neurosci; 2023; 17():994517. PubMed ID: 36793542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Heterogeneous Spiking Neural Network for Unsupervised Learning of Spatiotemporal Patterns.
    She X; Dash S; Kim D; Mukhopadhyay S
    Front Neurosci; 2020; 14():615756. PubMed ID: 33519366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training.
    Liu F; Zhao W; Chen Y; Wang Z; Yang T; Jiang L
    Front Neurosci; 2021; 15():756876. PubMed ID: 34803591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An unsupervised STDP-based spiking neural network inspired by biologically plausible learning rules and connections.
    Dong Y; Zhao D; Li Y; Zeng Y
    Neural Netw; 2023 Aug; 165():799-808. PubMed ID: 37418862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competitive Learning in a Spiking Neural Network: Towards an Intelligent Pattern Classifier.
    Lobov SA; Chernyshov AV; Krilova NP; Shamshin MO; Kazantsev VB
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31963143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unsupervised Spiking Neural Network with Dynamic Learning of Inhibitory Neurons.
    Yang G; Lee W; Seo Y; Lee C; Seok W; Park J; Sim D; Park C
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Representation learning using event-based STDP.
    Tavanaei A; Masquelier T; Maida A
    Neural Netw; 2018 Sep; 105():294-303. PubMed ID: 29894846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Digital design of a spatial-pow-STDP learning block with high accuracy utilizing pow CORDIC for large-scale image classifier spatiotemporal SNN.
    Bahrami MK; Nazari S
    Sci Rep; 2024 Feb; 14(1):3388. PubMed ID: 38337032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A bio-inspired hierarchical spiking neural network with biological synaptic plasticity for event camera object recognition].
    Zhou Q; Zheng P; Li X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2023 Aug; 40(4):692-699. PubMed ID: 37666759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. STDP-based spiking deep convolutional neural networks for object recognition.
    Kheradpisheh SR; Ganjtabesh M; Thorpe SJ; Masquelier T
    Neural Netw; 2018 Mar; 99():56-67. PubMed ID: 29328958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unsupervised speech recognition through spike-timing-dependent plasticity in a convolutional spiking neural network.
    Dong M; Huang X; Xu B
    PLoS One; 2018; 13(11):e0204596. PubMed ID: 30496179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CDNA-SNN: A New Spiking Neural Network for Pattern Classification Using Neuronal Assemblies.
    Saranirad V; Dora S; McGinnity TM; Coyle D
    IEEE Trans Neural Netw Learn Syst; 2024 Feb; PP():. PubMed ID: 38329858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial Properties of STDP in a Self-Learning Spiking Neural Network Enable Controlling a Mobile Robot.
    Lobov SA; Mikhaylov AN; Shamshin M; Makarov VA; Kazantsev VB
    Front Neurosci; 2020; 14():88. PubMed ID: 32174804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of encoding-decoding schemes and weight normalization in spiking neural networks.
    Liang Z; Schwartz D; Ditzler G; Koyluoglu OO
    Neural Netw; 2018 Dec; 108():365-378. PubMed ID: 30261415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Necessary conditions for STDP-based pattern recognition learning in a memristive spiking neural network.
    Demin VA; Nekhaev DV; Surazhevsky IA; Nikiruy KE; Emelyanov AV; Nikolaev SN; Rylkov VV; Kovalchuk MV
    Neural Netw; 2021 Feb; 134():64-75. PubMed ID: 33291017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MONETA: A Processing-In-Memory-Based Hardware Platform for the Hybrid Convolutional Spiking Neural Network With Online Learning.
    Kim D; Chakraborty B; She X; Lee E; Kang B; Mukhopadhyay S
    Front Neurosci; 2022; 16():775457. PubMed ID: 35478844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bi-sigmoid spike-timing dependent plasticity learning rule for magnetic tunnel junction-based SNN.
    Daddinounou S; Vatajelu EI
    Front Neurosci; 2024; 18():1387339. PubMed ID: 38817912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Locally connected spiking neural networks for unsupervised feature learning.
    Saunders DJ; Patel D; Hazan H; Siegelmann HT; Kozma R
    Neural Netw; 2019 Nov; 119():332-340. PubMed ID: 31499357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.