These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 34776899)

  • 1. Corticospinal Excitability of the Lower Limb Muscles During the Anticipatory Postural Adjustments: A TMS Study During Dart Throwing.
    Matsumoto A; Liang N; Ueda H; Irie K
    Front Hum Neurosci; 2021; 15():703377. PubMed ID: 34776899
    [No Abstract]   [Full Text] [Related]  

  • 2. External and internal focus of attention differentially modulate corticospinal excitability in anticipatory postural adjustments.
    Matsumoto A; Ueda H; Ogawa A; Oshima C; Irie K; Liang N
    Sci Rep; 2022 Dec; 12(1):22385. PubMed ID: 36572719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical contributions to anticipatory postural adjustments in the trunk.
    Chiou SY; Hurry M; Reed T; Quek JX; Strutton PH
    J Physiol; 2018 Apr; 596(7):1295-1306. PubMed ID: 29368403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Presetting of the Corticospinal Excitability in the Tibialis Anterior Muscle in Relation to Prediction of the Magnitude and Direction of Postural Perturbations.
    Fujio K; Obata H; Kawashima N; Nakazawa K
    Front Hum Neurosci; 2019; 13():4. PubMed ID: 30705626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical involvement in anticipatory postural reactions in man.
    Petersen TH; Rosenberg K; Petersen NC; Nielsen JB
    Exp Brain Res; 2009 Feb; 193(2):161-71. PubMed ID: 18956177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of low-frequency whole-body vibration on motor-evoked potentials in healthy men.
    Mileva KN; Bowtell JL; Kossev AR
    Exp Physiol; 2009 Jan; 94(1):103-16. PubMed ID: 18658234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anodal transcranial direct current stimulation enhances time to task failure of a submaximal contraction of elbow flexors without changing corticospinal excitability.
    Abdelmoula A; Baudry S; Duchateau J
    Neuroscience; 2016 May; 322():94-103. PubMed ID: 26892298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increase in corticospinal excitability of limb and trunk muscles according to maintenance of neck flexion.
    Fujiwara K; Tomita H; Kunita K
    Neurosci Lett; 2009 Sep; 461(3):235-9. PubMed ID: 19545609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hysteresis in corticospinal excitability during gradual muscle contraction and relaxation in humans.
    Kimura T; Yamanaka K; Nozaki D; Nakazawa K; Miyoshi T; Akai M; Ohtsuki T
    Exp Brain Res; 2003 Sep; 152(1):123-32. PubMed ID: 12879181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nature of facilitation of leg muscle motor evoked potentials by knee flexion.
    Izumi SI; Furukawa T; Koyama Y; Ishida A
    Somatosens Mot Res; 2001; 18(4):322-9. PubMed ID: 11794734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase- and Workload-Dependent Changes in Corticospinal Excitability to the Biceps and Triceps Brachii during Arm Cycling.
    Spence AJ; Alcock LR; Lockyer EJ; Button DC; Power KE
    Brain Sci; 2016 Dec; 6(4):. PubMed ID: 27983685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Agonist-Antagonist Coactivation Enhances Corticomotor Excitability of Ankle Muscles.
    Kesar TM; Tan A; Eicholtz S; Baker K; Xu J; Anderson JT; Wolf SL; Borich MR
    Neural Plast; 2019; 2019():5190671. PubMed ID: 31565049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elbow angle modulates corticospinal excitability to the resting biceps brachii at both spinal and supraspinal levels.
    Dongés SC; Taylor JL; Nuzzo JL
    Exp Physiol; 2019 Apr; 104(4):546-555. PubMed ID: 30690803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TMS coil orientation and muscle activation influence lower limb intracortical excitability.
    Hand BJ; Opie GM; Sidhu SK; Semmler JG
    Brain Res; 2020 Nov; 1746():147027. PubMed ID: 32717277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corticospinal excitability of tibialis anterior and soleus differs during passive ankle movement.
    Škarabot J; Ansdell P; Brownstein CG; Hicks KM; Howatson G; Goodall S; Durbaba R
    Exp Brain Res; 2019 Sep; 237(9):2239-2254. PubMed ID: 31243484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-Related Differences in Corticospinal Excitability and Anticipatory Postural Adjustments of the Trunk.
    Rowland RS; Jenkinson N; Chiou SY
    Front Aging Neurosci; 2021; 13():718784. PubMed ID: 34483887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decline in voluntary activation contributes to reduced maximal performance of fatigued human lower limb muscles.
    Mileva KN; Sumners DP; Bowtell JL
    Eur J Appl Physiol; 2012 Dec; 112(12):3959-70. PubMed ID: 22434254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle length and joint angle influence spinal but not corticospinal excitability to the biceps brachii across forearm postures.
    Forman DA; Abdel-Malek D; Bunce CMF; Holmes MWR
    J Neurophysiol; 2019 Jul; 122(1):413-423. PubMed ID: 31116661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of posture and coactivation on corticomotor excitability of ankle muscles.
    Kesar TM; Eicholtz S; Lin BJ; Wolf SL; Borich MR
    Restor Neurol Neurosci; 2018; 36(1):131-146. PubMed ID: 29439363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corticospinal input in human gait: modulation of magnetically evoked motor responses.
    Schubert M; Curt A; Jensen L; Dietz V
    Exp Brain Res; 1997 Jun; 115(2):234-46. PubMed ID: 9224852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.