These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 34777275)

  • 1. Humic Substances in Combination With Plant Growth-Promoting Bacteria as an Alternative for Sustainable Agriculture.
    da Silva MSRA; Dos Santos BMS; da Silva CSRA; da Silva CSRA; Antunes LFS; Dos Santos RM; Santos CHB; Rigobelo EC
    Front Microbiol; 2021; 12():719653. PubMed ID: 34777275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Humic Acid Enhances the Growth of Tomato Promoted by Endophytic Bacterial Strains Through the Activation of Hormone-, Growth-, and Transcription-Related Processes.
    Galambos N; Compant S; Moretto M; Sicher C; Puopolo G; Wäckers F; Sessitsch A; Pertot I; Perazzolli M
    Front Plant Sci; 2020; 11():582267. PubMed ID: 33042195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimistic contributions of plant growth-promoting bacteria for sustainable agriculture and climate stress alleviation.
    Cao M; Narayanan M; Shi X; Chen X; Li Z; Ma Y
    Environ Res; 2023 Jan; 217():114924. PubMed ID: 36471556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in metabolic profiling of sugarcane leaves induced by endophytic diazotrophic bacteria and humic acids.
    Aguiar NO; Olivares FL; Novotny EH; Canellas LP
    PeerJ; 2018; 6():e5445. PubMed ID: 30202643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Humic Substances on the Growth of
    Feoktistova A; Bakaeva M; Timergalin M; Chetverikova D; Kendjieva A; Rameev T; Hkudaygulov G; Nazarov A; Kudoyarova G; Chetverikov S
    Microorganisms; 2022 May; 10(5):. PubMed ID: 35630508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diverse Bacterial Genes Modulate Plant Root Association by Beneficial Bacteria.
    do Amaral FP; Tuleski TR; Pankievicz VCS; Melnyk RA; Arkin AP; Griffitts J; Tadra-Sfeir MZ; Maltempi de Souza E; Deutschbauer A; Monteiro RA; Stacey G
    mBio; 2020 Dec; 11(6):. PubMed ID: 33323518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast Screening of Bacteria for Plant Growth Promoting Traits.
    Batista BD; Bonatelli ML; Quecine MC
    Methods Mol Biol; 2021; 2232():61-75. PubMed ID: 33161540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biostimulants Application: A Low Input Cropping Management Tool for Sustainable Farming of Vegetables.
    Shahrajabian MH; Chaski C; Polyzos N; Petropoulos SA
    Biomolecules; 2021 May; 11(5):. PubMed ID: 34067181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current Techniques to Study Beneficial Plant-Microbe Interactions.
    Gamalero E; Bona E; Glick BR
    Microorganisms; 2022 Jul; 10(7):. PubMed ID: 35889099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies and prospects for biostimulants to alleviate abiotic stress in plants.
    Ma Y; Freitas H; Dias MC
    Front Plant Sci; 2022; 13():1024243. PubMed ID: 36618626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Productivity and quality of horticultural crops through co-inoculation of arbuscular mycorrhizal fungi and plant growth promoting bacteria.
    Emmanuel OC; Babalola OO
    Microbiol Res; 2020 Oct; 239():126569. PubMed ID: 32771873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Agroecological Management of the Grey Mould Fungus
    Orozco-Mosqueda MDC; Kumar A; Fadiji AE; Babalola OO; Puopolo G; Santoyo G
    Plants (Basel); 2023 Feb; 12(3):. PubMed ID: 36771719
    [No Abstract]   [Full Text] [Related]  

  • 13. Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects.
    Ferreira CMH; Soares HMVM; Soares EV
    Sci Total Environ; 2019 Sep; 682():779-799. PubMed ID: 31146074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diazotrophic Bacteria and Their Mechanisms to Interact and Benefit Cereals.
    Pankievicz VCS; do Amaral FP; Ané JM; Stacey G
    Mol Plant Microbe Interact; 2021 May; 34(5):491-498. PubMed ID: 33543986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant growth-promoting bacteria as inoculants in agricultural soils.
    Souza Rd; Ambrosini A; Passaglia LM
    Genet Mol Biol; 2015 Dec; 38(4):401-19. PubMed ID: 26537605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting rhizosphere microbial cooperation for developing sustainable agriculture strategies.
    Besset-Manzoni Y; Rieusset L; Joly P; Comte G; Prigent-Combaret C
    Environ Sci Pollut Res Int; 2018 Oct; 25(30):29953-29970. PubMed ID: 29313197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seed priming with plant growth-promoting bacteria (PGPB) improves growth and water stress tolerance of
    Rahnama S; Ghehsareh Ardestani E; Ebrahimi A; Nikookhah F
    Heliyon; 2023 Apr; 9(4):e15498. PubMed ID: 37151636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of beneficial bacterial endophytes: A practical strategy to achieve sustainable agriculture.
    Medison RG; Tan L; Medison MB; Chiwina KE
    AIMS Microbiol; 2022; 8(4):624-643. PubMed ID: 36694581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects.
    Etesami H; Maheshwari DK
    Ecotoxicol Environ Saf; 2018 Jul; 156():225-246. PubMed ID: 29554608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of action of plant growth promoting bacteria.
    Olanrewaju OS; Glick BR; Babalola OO
    World J Microbiol Biotechnol; 2017 Oct; 33(11):197. PubMed ID: 28986676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.