These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34777310)

  • 1. Enhanced Ethanol Production From Carbon Monoxide by Enriched
    He Y; Lens PNL; Veiga MC; Kennes C
    Front Microbiol; 2021; 12():754713. PubMed ID: 34777310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective butanol production from carbon monoxide by an enriched anaerobic culture.
    He Y; Lens PNL; Veiga MC; Kennes C
    Sci Total Environ; 2022 Feb; 806(Pt 2):150579. PubMed ID: 34582872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Endogenous and Exogenous Butyric Acid on Butanol Production From CO by Enriched
    He Y; Lens PNL; Veiga MC; Kennes C
    Front Bioeng Biotechnol; 2022; 10():828316. PubMed ID: 35252136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient butanol-ethanol (B-E) production from carbon monoxide fermentation by Clostridium carboxidivorans.
    Fernández-Naveira Á; Abubackar HN; Veiga MC; Kennes C
    Appl Microbiol Biotechnol; 2016 Apr; 100(7):3361-70. PubMed ID: 26810079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose bioconversion profile in the syngas-metabolizing species Clostridium carboxidivorans.
    Fernández-Naveira Á; Veiga MC; Kennes C
    Bioresour Technol; 2017 Nov; 244(Pt 1):552-559. PubMed ID: 28803105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of tungsten and selenium on C
    Chakraborty S; Rene ER; Lens PNL; Rintala J; Veiga MC; Kennes C
    Chemosphere; 2020 Jul; 250():126105. PubMed ID: 32092562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid.
    Abubackar HN; Veiga MC; Kennes C
    Bioresour Technol; 2015 Jun; 186():122-127. PubMed ID: 25812815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced solventogenesis in syngas bioconversion: Role of process parameters and thermodynamics.
    He Y; Kennes C; Lens PNL
    Chemosphere; 2022 Jul; 299():134425. PubMed ID: 35351479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon monoxide bioconversion to butanol-ethanol by Clostridium carboxidivorans: kinetics and toxicity of alcohols.
    Fernández-Naveira Á; Abubackar HN; Veiga MC; Kennes C
    Appl Microbiol Biotechnol; 2016 May; 100(9):4231-40. PubMed ID: 26921183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass.
    Hassan EA; Abd-Alla MH; Bagy MM; Morsy FM
    Anaerobe; 2015 Aug; 34():125-31. PubMed ID: 26014369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethanol and acetic acid production from carbon monoxide in a Clostridium strain in batch and continuous gas-fed bioreactors.
    Abubackar HN; Veiga MC; Kennes C
    Int J Environ Res Public Health; 2015 Jan; 12(1):1029-43. PubMed ID: 25608591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct conversion of sugars and organic acids to biobutanol by non-growing cells of Clostridium spp. incubated in a nitrogen-free medium.
    Loyarkat S; Cheirsilp B; Umsakul K
    Appl Biochem Biotechnol; 2013 Dec; 171(7):1726-38. PubMed ID: 23996124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans.
    Wen Z; Wu M; Lin Y; Yang L; Lin J; Cen P
    Microb Cell Fact; 2014 Jul; 13(1):92. PubMed ID: 25023325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-Stat continuous butyric acid and glucose feeding method.
    Tashiro Y; Takeda K; Kobayashi G; Sonomoto K; Ishizaki A; Yoshino S
    J Biosci Bioeng; 2004; 98(4):263-8. PubMed ID: 16233703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved n-butanol production by a non-acetone producing Clostridium pasteurianum DSMZ 525 in mixed substrate fermentation.
    Sabra W; Groeger C; Sharma PN; Zeng AP
    Appl Microbiol Biotechnol; 2014 May; 98(9):4267-76. PubMed ID: 24584460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autotrophic (C
    Arslan K; Veiga MC; Kennes C
    Bioresour Technol; 2021 Oct; 337():125485. PubMed ID: 34320764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced isopropanol and n-butanol production by supplying exogenous acetic acid via co-culturing two clostridium strains from cassava bagasse hydrolysate.
    Zhang S; Qu C; Huang X; Suo Y; Liao Z; Wang J
    J Ind Microbiol Biotechnol; 2016 Jul; 43(7):915-25. PubMed ID: 27116556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of pH and butyric acid on butanol production during batch fermentation using a new local isolate of
    Al-Shorgani NKN; Kalil MS; Yusoff WMW; Hamid AA
    Saudi J Biol Sci; 2018 Feb; 25(2):339-348. PubMed ID: 29472788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-titer n-butanol production by clostridium acetobutylicum JB200 in fed-batch fermentation with intermittent gas stripping.
    Xue C; Zhao J; Lu C; Yang ST; Bai F; Tang IC
    Biotechnol Bioeng; 2012 Nov; 109(11):2746-56. PubMed ID: 22627864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of three pH control methods for revealing effects of undissociated butyric acid on specific butanol production rate in batch fermentation of Clostridium acetobutylicum.
    Yang X; Tu M; Xie R; Adhikari S; Tong Z
    AMB Express; 2013 Jan; 3(1):3. PubMed ID: 23294525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.