These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 34777443)
1. Transcriptome and Metabolome Analyses Reveal Potential Salt Tolerance Mechanisms Contributing to Maintenance of Water Balance by the Halophytic Grass Vaziriyeganeh M; Khan S; Zwiazek JJ Front Plant Sci; 2021; 12():760863. PubMed ID: 34777443 [TBL] [Abstract][Full Text] [Related]
2. Salinity Tolerance of Halophytic Grass Vaziriyeganeh M; Carvajal M; Du N; Zwiazek JJ Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628537 [TBL] [Abstract][Full Text] [Related]
3. Water transport properties of root cells contribute to salt tolerance in halophytic grasses Poa juncifolia and Puccinellia nuttalliana. Vaziriyeganeh M; Lee SH; Zwiazek JJ Plant Sci; 2018 Nov; 276():54-62. PubMed ID: 30348328 [TBL] [Abstract][Full Text] [Related]
4. Analysis of aquaporins in northern grasses reveal functional importance of Puccinellia nuttalliana PIP2;2 in salt tolerance. Vaziriyeganeh M; Khan S; Zwiazek JJ Plant Cell Environ; 2023 Jul; 46(7):2159-2173. PubMed ID: 37051679 [TBL] [Abstract][Full Text] [Related]
5. Comprehensive analysis of transcriptome response to salinity stress in the halophytic turf grass Sporobolus virginicus. Yamamoto N; Takano T; Tanaka K; Ishige T; Terashima S; Endo C; Kurusu T; Yajima S; Yano K; Tada Y Front Plant Sci; 2015; 6():241. PubMed ID: 25954282 [TBL] [Abstract][Full Text] [Related]
6. SOS1, HKT1;5, and NHX1 Synergistically Modulate Na Zhang WD; Wang P; Bao Z; Ma Q; Duan LJ; Bao AK; Zhang JL; Wang SM Front Plant Sci; 2017; 8():576. PubMed ID: 28450879 [No Abstract] [Full Text] [Related]
7. Comparative transcriptome profiling provides insights into plant salt tolerance in seashore paspalum (Paspalum vaginatum). Wu P; Cogill S; Qiu Y; Li Z; Zhou M; Hu Q; Chang Z; Noorai RE; Xia X; Saski C; Raymer P; Luo H BMC Genomics; 2020 Feb; 21(1):131. PubMed ID: 32033524 [TBL] [Abstract][Full Text] [Related]
8. Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora. Yu J; Chen S; Zhao Q; Wang T; Yang C; Diaz C; Sun G; Dai S J Proteome Res; 2011 Sep; 10(9):3852-70. PubMed ID: 21732589 [TBL] [Abstract][Full Text] [Related]
9. Comprehensive transcriptome and metabolome profiling reveal metabolic mechanisms of Nitraria sibirica Pall. to salt stress. Li H; Tang X; Yang X; Zhang H Sci Rep; 2021 Jun; 11(1):12878. PubMed ID: 34145354 [TBL] [Abstract][Full Text] [Related]
10. Lipid metabolism and antioxidant system contribute to salinity tolerance in halophytic grass seashore paspalum in a tissue-specific manner. Pan L; Hu X; Liao L; Xu T; Sun Q; Tang M; Chen Z; Wang Z BMC Plant Biol; 2023 Jun; 23(1):337. PubMed ID: 37353755 [TBL] [Abstract][Full Text] [Related]
11. The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE. Molina C; Zaman-Allah M; Khan F; Fatnassi N; Horres R; Rotter B; Steinhauer D; Amenc L; Drevon JJ; Winter P; Kahl G BMC Plant Biol; 2011 Feb; 11():31. PubMed ID: 21320317 [TBL] [Abstract][Full Text] [Related]
12. The mechanistic basis of sodium exclusion in Puccinellia tenuiflora under conditions of salinity and potassium deprivation. Han QQ; Wang YP; Li J; Li J; Yin XC; Jiang XY; Yu M; Wang SM; Shabala S; Zhang JL Plant J; 2022 Oct; 112(2):322-338. PubMed ID: 35979653 [TBL] [Abstract][Full Text] [Related]
13. Understanding salt tolerance mechanism using transcriptome profiling and de novo assembly of wild tomato Solanum chilense. Kashyap SP; Prasanna HC; Kumari N; Mishra P; Singh B Sci Rep; 2020 Sep; 10(1):15835. PubMed ID: 32985535 [TBL] [Abstract][Full Text] [Related]
14. Transcriptome assembly, profiling and differential gene expression analysis of the halophyte Suaeda fruticosa provides insights into salt tolerance. Diray-Arce J; Clement M; Gul B; Khan MA; Nielsen BL BMC Genomics; 2015 May; 16(1):353. PubMed ID: 25943316 [TBL] [Abstract][Full Text] [Related]
15. Adaptation Strategies of Halophytic Barley Isayenkov S; Hilo A; Rizzo P; Tandron Moya YA; Rolletschek H; Borisjuk L; Radchuk V Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33260985 [TBL] [Abstract][Full Text] [Related]
16. Integrative analysis of transcriptome and metabolome reveal mechanism of tolerance to salt stress in oat (Avena sativa L.). Xu Z; Chen X; Lu X; Zhao B; Yang Y; Liu J Plant Physiol Biochem; 2021 Mar; 160():315-328. PubMed ID: 33545609 [TBL] [Abstract][Full Text] [Related]
17. Identification of candidate genes related to salt tolerance of the secretohalophyte Atriplex canescens by transcriptomic analysis. Guo H; Zhang L; Cui YN; Wang SM; Bao AK BMC Plant Biol; 2019 May; 19(1):213. PubMed ID: 31117942 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome revealed the molecular mechanism of Glycyrrhiza inflata root to maintain growth and development, absorb and distribute ions under salt stress. Xu Y; Lu JH; Zhang JD; Liu DK; Wang Y; Niu QD; Huang DD BMC Plant Biol; 2021 Dec; 21(1):599. PubMed ID: 34915868 [TBL] [Abstract][Full Text] [Related]
19. Ion homeostasis in a salt-secreting halophytic grass. Sanadhya P; Agarwal P; Agarwal PK AoB Plants; 2015 May; 7():. PubMed ID: 25990364 [TBL] [Abstract][Full Text] [Related]
20. Growth and physiological adaptation of whole plants and cultured cells from a halophyte turf grass under salt stress. Tada Y; Komatsubara S; Kurusu T AoB Plants; 2014 Jul; 6():. PubMed ID: 25024277 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]