BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 34777501)

  • 21. Photochemical decoration of silver nanoparticles on silver vanadate nanorods as an efficient SERS probe for ultrasensitive detection of chloramphenicol residue in real samples.
    Barveen NR; Wang TJ; Chang YH
    Chemosphere; 2021 Jul; 275():130115. PubMed ID: 33984904
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Label free structure-switching fluorescence polarization detection of chloramphenicol with truncated aptamer.
    Ma P; Guo H; Duan N; Ma X; Yue L; Gu Q; Wang Z
    Talanta; 2021 Aug; 230():122349. PubMed ID: 33934798
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of amphenicol antibiotics and their glucuronide metabolites in urine samples using liquid chromatography with quadrupole time-of-flight mass spectrometry.
    Pastor-Belda M; Campillo N; Arroyo-Manzanares N; Hernández-Córdoba M; Viñas P
    J Chromatogr B Analyt Technol Biomed Life Sci; 2020 Jun; 1146():122122. PubMed ID: 32334391
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A simple and rapid sensing strategy based on structure-switching signaling aptamers for the sensitive detection of chloramphenicol.
    Ma X; Li H; Qiao S; Huang C; Liu Q; Shen X; Geng Y; Xu W; Sun C
    Food Chem; 2020 Jan; 302():125359. PubMed ID: 31442702
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determination of total florfenicol residues as florfenicol amine in bovine tissues and eel by liquid chromatography-tandem mass spectrometry using external calibration.
    Saito-Shida S; Shiono K; Narushima J; Nemoto S; Akiyama H
    J Chromatogr B Analyt Technol Biomed Life Sci; 2019 Mar; 1109():37-44. PubMed ID: 30710867
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrasound assisted dispersive liquid-liquid microextraction for fast and accurate analysis of chloramphenicol in honey.
    Campone L; Celano R; Piccinelli AL; Pagano I; Cicero N; Sanzo RD; Carabetta S; Russo M; Rastrelli L
    Food Res Int; 2019 Jan; 115():572-579. PubMed ID: 30599981
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative analysis of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in eggs via liquid chromatography-electrospray ionization tandem mass spectrometry.
    Xie X; Wang B; Pang M; Zhao X; Xie K; Zhang Y; Wang Y; Guo Y; Liu C; Bu X; Wang R; Shi H; Zhang G; Zhang T; Dai G; Wang J
    Food Chem; 2018 Dec; 269():542-548. PubMed ID: 30100471
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optical and electrochemical aptasensors for the detection of amphenicols.
    Sadeghi AS; Ansari N; Ramezani M; Abnous K; Mohsenzadeh M; Taghdisi SM; Alibolandi M
    Biosens Bioelectron; 2018 Oct; 118():137-152. PubMed ID: 30075384
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A simple and rapid LC-MS/MS method for the determination of amphenicols in Nile tilapia.
    Guidi LR; Tette PAS; Gloria MBA; Fernandes C
    Food Chem; 2018 Oct; 262():235-241. PubMed ID: 29751915
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A wheat straw cellulose-based hydrogel for Cu (II) removal and preparation copper nanocomposite for reductive degradation of chloramphenicol.
    Ding J; Li Q; Xu X; Zhang X; Su Y; Yue Q; Gao B
    Carbohydr Polym; 2018 Jun; 190():12-22. PubMed ID: 29628228
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development and characterization of DNA aptamers against florfenicol: Fabrication of a sensitive fluorescent aptasensor for specific detection of florfenicol in milk.
    Sadeghi AS; Mohsenzadeh M; Abnous K; Taghdisi SM; Ramezani M
    Talanta; 2018 May; 182():193-201. PubMed ID: 29501140
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Total determination of chloramphenicol residues in foods by liquid chromatography-tandem mass spectrometry.
    Kikuchi H; Sakai T; Teshima R; Nemoto S; Akiyama H
    Food Chem; 2017 Sep; 230():589-593. PubMed ID: 28407954
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A simple, fast and sensitive screening LC-ESI-MS/MS method for antibiotics in fish.
    Guidi LR; Santos FA; Ribeiro AC; Fernandes C; Silva LH; Gloria MB
    Talanta; 2017 Jan; 163():85-93. PubMed ID: 27886775
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advances on the chromatographic determination of amphenicols in food.
    Guidi LR; Tette PA; Fernandes C; Silva LH; Gloria MB
    Talanta; 2017 Jan; 162():324-338. PubMed ID: 27837837
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of chloramphenicol, thiamphenicol and florfenicol in milk and honey using modified QuEChERS extraction coupled with polymeric monolith-based capillary liquid chromatography tandem mass spectrometry.
    Liu HY; Lin SL; Fuh MR
    Talanta; 2016 Apr; 150():233-9. PubMed ID: 26838404
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a subcritical water extraction approach for trace analysis of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in poultry tissues.
    Xiao Z; Song R; Rao Z; Wei S; Jia Z; Suo D; Fan X
    J Chromatogr A; 2015 Oct; 1418():29-35. PubMed ID: 26433266
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development and validation of determinative and confirmatory LC-MS/MS methodologies for total florfenicol and tulathromycin residues in bovine, equine and porcine kidney, liver and muscle tissues.
    Fedeniuk RW; McKenzie D; Mizuno M; Neiser C; O'Byrne C; Shurmer B
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Mar; 983-984():1-9. PubMed ID: 25612770
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fast extraction of amphenicols residues from raw milk using novel fabric phase sorptive extraction followed by high-performance liquid chromatography-diode array detection.
    Samanidou V; Galanopoulos LD; Kabir A; Furton KG
    Anal Chim Acta; 2015 Jan; 855():41-50. PubMed ID: 25542088
    [TBL] [Abstract][Full Text] [Related]  

  • 39. China's meat industry revolution: challenges and opportunities for the future.
    Zhou G; Zhang W; Xu X
    Meat Sci; 2012 Nov; 92(3):188-96. PubMed ID: 22608925
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ELISA screening and liquid chromatography-tandem mass spectrometry confirmation of chloramphenicol residues in chicken muscle, and the validation of a confirmatory method by liquid chromatography-tandem mass spectrometry.
    Yibar A; Cetinkaya F; Soyutemiz GE
    Poult Sci; 2011 Nov; 90(11):2619-26. PubMed ID: 22010249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.