These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 34777585)

  • 1. Renewable and recyclable covalent adaptable networks based on bio-derived lipoic acid.
    Alraddadi MA; Chiaradia V; Stubbs CJ; Worch JC; Dove AP
    Polym Chem; 2021 Oct; 12(40):5796-5802. PubMed ID: 34777585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polythiourethane Covalent Adaptable Networks for Strong and Reworkable Adhesives and Fully Recyclable Carbon Fiber-Reinforced Composites.
    Cui C; Chen X; Ma L; Zhong Q; Li Z; Mariappan A; Zhang Q; Cheng Y; He G; Chen X; Dong Z; An L; Zhang Y
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47975-47983. PubMed ID: 32986410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong and Tough Supramolecular Covalent Adaptable Networks with Room-Temperature Closed-Loop Recyclability.
    Zhang Z; Lei D; Zhang C; Wang Z; Jin Y; Zhang W; Liu X; Sun J
    Adv Mater; 2023 Feb; 35(7):e2208619. PubMed ID: 36367361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Closed-loop recyclable and biodegradable thioester-based covalent adaptable networks.
    Maity PR; Upadhyay C; Sinha ASK; Ojha U
    Chem Commun (Camb); 2023 Apr; 59(28):4225-4228. PubMed ID: 36940094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Covalent Adaptable Networks with Tailorable Material Properties Based on Divanillin Polyimines.
    Fanjul-Mosteirín N; Odelius K
    Biomacromolecules; 2024 Apr; 25(4):2348-2357. PubMed ID: 38499398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving Sustainability through Covalent Adaptable Networks in the Recycling of Polyurethane Plastics.
    Miravalle E; Bracco P; Brunella V; Barolo C; Zanetti M
    Polymers (Basel); 2023 Sep; 15(18):. PubMed ID: 37765634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reprocessible Triketoenamine-Based Vitrimers with Closed-Loop Recyclability.
    Hu Z; Hu F; Deng L; Yang Y; Xie Q; Gao Z; Pan C; Jin Y; Tang J; Yu G; Zhang W
    Angew Chem Int Ed Engl; 2023 Aug; 62(34):e202306039. PubMed ID: 37314932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Covalent Adaptable Networks Using β-Amino Esters as Thermally Reversible Building Blocks.
    Taplan C; Guerre M; Du Prez FE
    J Am Chem Soc; 2021 Jun; 143(24):9140-9150. PubMed ID: 34121401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reprocessable and Recyclable Chain-Growth Polymer Networks Based on Dynamic Hindered Urea Bonds.
    Bin Rusayyis MA; Torkelson JM
    ACS Macro Lett; 2022 Apr; 11(4):568-574. PubMed ID: 35575326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal Coordination in Polyimine Covalent Adaptable Networks for Tunable Material Properties and Enhanced Creep Resistance.
    Schoustra SK; Smulders MMJ
    Macromol Rapid Commun; 2023 Mar; 44(5):e2200790. PubMed ID: 36629864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reprocessable, Self-Healing, and Creep-Resistant Covalent Adaptable Network Made from Chain-Growth Monomers with Dynamic Covalent Thionourethane and Disulfide Cross-Links.
    Wang T; Chen Y; Chen B; Suazo MJ; Purwanto NS; Torkelson JM
    ACS Macro Lett; 2024 Sep; 13(9):1147-1155. PubMed ID: 39150319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman Spectroscopy Reveals Phase Separation in Imine-Based Covalent Adaptable Networks.
    Schoustra SK; de Heer Kloots MHP; Posthuma J; van Doorn D; Dijksman JA; Smulders MMJ
    Macromolecules; 2022 Dec; 55(23):10341-10355. PubMed ID: 36530523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent Adaptable Polymethacrylate Networks by Hydrazide Crosslinking Via Isosorbide Levulinate Side Groups.
    Matt L; Sedrik R; Bonjour O; Vasiliauskaité M; Jannasch P; Vares L
    ACS Sustain Chem Eng; 2023 Jun; 11(22):8294-8307. PubMed ID: 37292449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covalent adaptable networks: smart, reconfigurable and responsive network systems.
    Kloxin CJ; Bowman CN
    Chem Soc Rev; 2013 Sep; 42(17):7161-73. PubMed ID: 23579959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recycling of Commercially Available Biobased Thermoset Polyurethane Using Covalent Adaptable Network Mechanisms.
    Miravalle E; Viada G; Bonomo M; Barolo C; Bracco P; Zanetti M
    Polymers (Basel); 2024 Aug; 16(15):. PubMed ID: 39125243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enabling Applications of Covalent Adaptable Networks.
    McBride MK; Worrell BT; Brown T; Cox LM; Sowan N; Wang C; Podgorski M; Martinez AM; Bowman CN
    Annu Rev Chem Biomol Eng; 2019 Jun; 10():175-198. PubMed ID: 30883213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward Stimuli-Responsive Dynamic Thermosets through Continuous Development and Improvements in Covalent Adaptable Networks (CANs).
    Podgórski M; Fairbanks BD; Kirkpatrick BE; McBride M; Martinez A; Dobson A; Bongiardina NJ; Bowman CN
    Adv Mater; 2020 May; 32(20):e1906876. PubMed ID: 32057157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spiroborate-Linked Ionic Covalent Adaptable Networks with Rapid Reprocessability and Closed-Loop Recyclability.
    Chen H; Hu Y; Luo C; Lei Z; Huang S; Wu J; Jin Y; Yu K; Zhang W
    J Am Chem Soc; 2023 Apr; 145(16):9112-9117. PubMed ID: 37058550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalyst-Free Dynamic Covalent C=C/C=N Metathesis Reaction for Associative Covalent Adaptable Networks.
    Li P; Jiang X; Gu R; Tian H; Qu DH
    Angew Chem Int Ed Engl; 2024 Aug; 63(33):e202406708. PubMed ID: 38828797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thiol-Anhydride Dynamic Reversible Networks.
    Podgórski M; Mavila S; Huang S; Spurgin N; Sinha J; Bowman CN
    Angew Chem Int Ed Engl; 2020 Jun; 59(24):9345-9349. PubMed ID: 32133746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.