These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Covalent Adaptable Networks with Tailorable Material Properties Based on Divanillin Polyimines. Fanjul-Mosteirín N; Odelius K Biomacromolecules; 2024 Apr; 25(4):2348-2357. PubMed ID: 38499398 [TBL] [Abstract][Full Text] [Related]
6. Improving Sustainability through Covalent Adaptable Networks in the Recycling of Polyurethane Plastics. Miravalle E; Bracco P; Brunella V; Barolo C; Zanetti M Polymers (Basel); 2023 Sep; 15(18):. PubMed ID: 37765634 [TBL] [Abstract][Full Text] [Related]
7. Reprocessible Triketoenamine-Based Vitrimers with Closed-Loop Recyclability. Hu Z; Hu F; Deng L; Yang Y; Xie Q; Gao Z; Pan C; Jin Y; Tang J; Yu G; Zhang W Angew Chem Int Ed Engl; 2023 Aug; 62(34):e202306039. PubMed ID: 37314932 [TBL] [Abstract][Full Text] [Related]
8. Covalent Adaptable Networks Using β-Amino Esters as Thermally Reversible Building Blocks. Taplan C; Guerre M; Du Prez FE J Am Chem Soc; 2021 Jun; 143(24):9140-9150. PubMed ID: 34121401 [TBL] [Abstract][Full Text] [Related]
9. Reprocessable and Recyclable Chain-Growth Polymer Networks Based on Dynamic Hindered Urea Bonds. Bin Rusayyis MA; Torkelson JM ACS Macro Lett; 2022 Apr; 11(4):568-574. PubMed ID: 35575326 [TBL] [Abstract][Full Text] [Related]
10. Metal Coordination in Polyimine Covalent Adaptable Networks for Tunable Material Properties and Enhanced Creep Resistance. Schoustra SK; Smulders MMJ Macromol Rapid Commun; 2023 Mar; 44(5):e2200790. PubMed ID: 36629864 [TBL] [Abstract][Full Text] [Related]
11. Reprocessable, Self-Healing, and Creep-Resistant Covalent Adaptable Network Made from Chain-Growth Monomers with Dynamic Covalent Thionourethane and Disulfide Cross-Links. Wang T; Chen Y; Chen B; Suazo MJ; Purwanto NS; Torkelson JM ACS Macro Lett; 2024 Sep; 13(9):1147-1155. PubMed ID: 39150319 [TBL] [Abstract][Full Text] [Related]