These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 34777735)

  • 21. A Segmentation Framework of Pulmonary Nodules in Lung CT Images.
    Mukhopadhyay S
    J Digit Imaging; 2016 Feb; 29(1):86-103. PubMed ID: 26055544
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel and powerful 3D adaptive crisp active contour method applied in the segmentation of CT lung images.
    Rebouças Filho PP; Cortez PC; da Silva Barros AC; C Albuquerque VH; R S Tavares JM
    Med Image Anal; 2017 Jan; 35():503-516. PubMed ID: 27614793
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pulmonary nodules: improved detection with vascular segmentation and extraction with spiral CT. Work in progress.
    Croisille P; Souto M; Cova M; Wood S; Afework Y; Kuhlman JE; Zerhouni EA
    Radiology; 1995 Nov; 197(2):397-401. PubMed ID: 7480683
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anatomy packing with hierarchical segments: an algorithm for segmentation of pulmonary nodules in CT images.
    Tsou CH; Lor KL; Chang YC; Chen CM
    Biomed Eng Online; 2015 May; 14():42. PubMed ID: 25971587
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptive border marching algorithm: automatic lung segmentation on chest CT images.
    Pu J; Roos J; Yi CA; Napel S; Rubin GD; Paik DS
    Comput Med Imaging Graph; 2008 Sep; 32(6):452-62. PubMed ID: 18515044
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A computational pipeline for quantification of pulmonary infections in small animal models using serial PET-CT imaging.
    Bagci U; Foster B; Miller-Jaster K; Luna B; Dey B; Bishai WR; Jonsson CB; Jain S; Mollura DJ
    EJNMMI Res; 2013 Jul; 3(1):55. PubMed ID: 23879987
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Segmentation of pulmonary vascular tree by incorporating vessel enhancement filter and variational region-growing.
    Duan HH; Su GQ; Huang YC; Song LT; Nie SD
    J Xray Sci Technol; 2019; 27(2):343-360. PubMed ID: 30856156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Segmentation of pulmonary nodules in CT images based on 3D-UNET combined with three-dimensional conditional random field optimization.
    Wu W; Gao L; Duan H; Huang G; Ye X; Nie S
    Med Phys; 2020 Sep; 47(9):4054-4063. PubMed ID: 32428969
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A fully automatic method for lung parenchyma segmentation and repairing.
    Wei Y; Shen G; Li JJ
    J Digit Imaging; 2013 Jun; 26(3):483-95. PubMed ID: 23053904
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Many Is Better Than One: An Integration of Multiple Simple Strategies for Accurate Lung Segmentation in CT Images.
    Shi Z; Ma J; Zhao M; Liu Y; Feng Y; Zhang M; He L; Suzuki K
    Biomed Res Int; 2016; 2016():1480423. PubMed ID: 27635395
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automated brain extraction from head CT and CTA images using convex optimization with shape propagation.
    Najm M; Kuang H; Federico A; Jogiat U; Goyal M; Hill MD; Demchuk A; Menon BK; Qiu W
    Comput Methods Programs Biomed; 2019 Jul; 176():1-8. PubMed ID: 31200897
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tissue segmentation of computed tomography images using a Random Forest algorithm: a feasibility study.
    Polan DF; Brady SL; Kaufman RA
    Phys Med Biol; 2016 Sep; 61(17):6553-69. PubMed ID: 27530679
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A robust and efficient framework for tubular structure segmentation in chest CT images.
    Wang B; Shi H; Cui E; Zhao H; Yang D; Zhu J; Dou S
    Technol Health Care; 2021; 29(4):655-665. PubMed ID: 33427700
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pulmonary Artery-Vein Classification in CT Images Using Deep Learning.
    Nardelli P; Jimenez-Carretero D; Bermejo-Pelaez D; Washko GR; Rahaghi FN; Ledesma-Carbayo MJ; San Jose Estepar R
    IEEE Trans Med Imaging; 2018 Nov; 37(11):2428-2440. PubMed ID: 29993996
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Region growing algorithm combined with morphology and skeleton analysis for segmenting airway tree in CT images.
    Duan HH; Gong J; Sun XW; Nie SD
    J Xray Sci Technol; 2020; 28(2):311-331. PubMed ID: 32039883
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An unsupervised automatic segmentation algorithm for breast tissue classification of dedicated breast computed tomography images.
    Caballo M; Boone JM; Mann R; Sechopoulos I
    Med Phys; 2018 Jun; 45(6):2542-2559. PubMed ID: 29676025
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Motion correction for routine X-ray lung CT imaging.
    Kim D; Choi J; Lee D; Kim H; Jung J; Cho M; Lee KY
    Sci Rep; 2021 Feb; 11(1):3695. PubMed ID: 33580147
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CT liver tumor segmentation hybrid approach using neutrosophic sets, fast fuzzy c-means and adaptive watershed algorithm.
    Anter AM; Hassenian AE
    Artif Intell Med; 2019 Jun; 97():105-117. PubMed ID: 30558825
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Algorithm of Pulmonary Vascular Segment and Centerline Extraction.
    Qiu S; Lian J; Ding Y; Zhou T; Liang T
    Comput Math Methods Med; 2021; 2021():3859386. PubMed ID: 34484415
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accuracy of registration algorithms in subtraction CT of the lungs: A digital phantom study.
    Grob D; Oostveen L; Rühaak J; Heldmann S; Mohr B; Michielsen K; Dorn S; Prokop M; Kachelrieβ M; Brink M; Sechopoulos I
    Med Phys; 2019 May; 46(5):2264-2274. PubMed ID: 30888690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.