These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34777751)

  • 1. Chemoselective cysteine or disulfide modification
    Xu L; Silva MJSA; Gois PMP; Kuan SL; Weil T
    Chem Sci; 2021 Oct; 12(40):13321-13330. PubMed ID: 34777751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cysteine-specific protein multi-functionalization and disulfide bridging using 3-bromo-5-methylene pyrrolones.
    Zhang Y; Zang C; An G; Shang M; Cui Z; Chen G; Xi Z; Zhou C
    Nat Commun; 2020 Feb; 11(1):1015. PubMed ID: 32081914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A "tag-and-modify" approach to site-selective protein modification.
    Chalker JM; Bernardes GJ; Davis BG
    Acc Chem Res; 2011 Sep; 44(9):730-41. PubMed ID: 21563755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemo- and Regioselective Lysine Modification on Native Proteins.
    Matos MJ; Oliveira BL; Martínez-Sáez N; Guerreiro A; Cal PMSD; Bertoldo J; Maneiro M; Perkins E; Howard J; Deery MJ; Chalker JM; Corzana F; Jiménez-Osés G; Bernardes GJL
    J Am Chem Soc; 2018 Mar; 140(11):4004-4017. PubMed ID: 29473744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stoichiometric and irreversible cysteine-selective protein modification using carbonylacrylic reagents.
    Bernardim B; Cal PM; Matos MJ; Oliveira BL; Martínez-Sáez N; Albuquerque IS; Perkins E; Corzana F; Burtoloso AC; Jiménez-Osés G; Bernardes GJ
    Nat Commun; 2016 Oct; 7():13128. PubMed ID: 27782215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein Substrates for Reaction Discovery: Site-Selective Modification with Boronic Acid Reagents.
    Ball ZT
    Acc Chem Res; 2019 Mar; 52(3):566-575. PubMed ID: 30821435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Platform for Orthogonal
    Istrate A; Geeson MB; Navo CD; Sousa BB; Marques MC; Taylor RJ; Journeaux T; Oehler SR; Mortensen MR; Deery MJ; Bond AD; Corzana F; Jiménez-Osés G; Bernardes GJL
    J Am Chem Soc; 2022 Jun; 144(23):10396-10406. PubMed ID: 35658467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A protein functionalization platform based on selective reactions at methionine residues.
    Taylor MT; Nelson JE; Suero MG; Gaunt MJ
    Nature; 2018 Oct; 562(7728):563-568. PubMed ID: 30323287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast Cysteine Bioconjugation Chemistry.
    Chen FJ; Gao J
    Chemistry; 2022 Nov; 28(66):e202201843. PubMed ID: 35970770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aryloxymaleimides for cysteine modification, disulfide bridging and the dual functionalization of disulfide bonds.
    Marculescu C; Kossen H; Morgan RE; Mayer P; Fletcher SA; Tolner B; Chester KA; Jones LH; Baker JR
    Chem Commun (Camb); 2014 Jul; 50(54):7139-42. PubMed ID: 24853662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances of thiol-selective bioconjugation reactions.
    Ochtrop P; Hackenberger CPR
    Curr Opin Chem Biol; 2020 Oct; 58():28-36. PubMed ID: 32645576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective disulfide reduction for labeling and enhancement of Fab antibody fragments.
    Kirley TL; Greis KD; Norman AB
    Biochem Biophys Res Commun; 2016 Nov; 480(4):752-757. PubMed ID: 27983990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein modification, bioconjugation, and disulfide bridging using bromomaleimides.
    Smith ME; Schumacher FF; Ryan CP; Tedaldi LM; Papaioannou D; Waksman G; Caddick S; Baker JR
    J Am Chem Soc; 2010 Feb; 132(6):1960-5. PubMed ID: 20092331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 5-Hydroxy-pyrrolone based building blocks as maleimide alternatives for protein bioconjugation and single-site multi-functionalization.
    De Geyter E; Antonatou E; Kalaitzakis D; Smolen S; Iyer A; Tack L; Ongenae E; Vassilikogiannakis G; Madder A
    Chem Sci; 2021 Mar; 12(14):5246-5252. PubMed ID: 34163760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quaternization of Vinyl/Alkynyl Pyridine Enables Ultrafast Cysteine-Selective Protein Modification and Charge Modulation.
    Matos MJ; Navo CD; Hakala T; Ferhati X; Guerreiro A; Hartmann D; Bernardim B; Saar KL; Compañón I; Corzana F; Knowles TPJ; Jiménez-Osés G; Bernardes GJL
    Angew Chem Int Ed Engl; 2019 May; 58(20):6640-6644. PubMed ID: 30897271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired Thiophosphorodichloridate Reagents for Chemoselective Histidine Bioconjugation.
    Jia S; He D; Chang CJ
    J Am Chem Soc; 2019 May; 141(18):7294-7301. PubMed ID: 31017395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dinitroimidazoles as bifunctional bioconjugation reagents for protein functionalization and peptide macrocyclization.
    Luo Q; Tao Y; Sheng W; Lu J; Wang H
    Nat Commun; 2019 Jan; 10(1):142. PubMed ID: 30635561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient and irreversible antibody-cysteine bioconjugation using carbonylacrylic reagents.
    Bernardim B; Matos MJ; Ferhati X; Compañón I; Guerreiro A; Akkapeddi P; Burtoloso ACB; Jiménez-Osés G; Corzana F; Bernardes GJL
    Nat Protoc; 2019 Jan; 14(1):86-99. PubMed ID: 30470819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DiPODS: A Reagent for Site-Specific Bioconjugation via the Irreversible Rebridging of Disulfide Linkages.
    Khozeimeh Sarbisheh E; Dewaele-Le Roi G; Shannon WE; Tan S; Xu Y; Zeglis BM; Price EW
    Bioconjug Chem; 2020 Dec; 31(12):2789-2806. PubMed ID: 33210532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diethynyl Phosphinates for Cysteine-Selective Protein Labeling and Disulfide Rebridging.
    Stieger CE; Franz L; Körlin F; Hackenberger CPR
    Angew Chem Int Ed Engl; 2021 Jul; 60(28):15359-15364. PubMed ID: 34080747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.