These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34777775)

  • 1. Electrochemical synthesis of core-shell nanoparticles by seed-mediated selective deposition.
    Park JH; Jin SM; Lee E; Ahn HS
    Chem Sci; 2021 Oct; 12(40):13557-13563. PubMed ID: 34777775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Core-Shell Au@Metal-Oxide Nanoparticle Electrocatalysts for Enhanced Oxygen Evolution.
    Strickler AL; Escudero-Escribano MA; Jaramillo TF
    Nano Lett; 2017 Oct; 17(10):6040-6046. PubMed ID: 28945433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical synthesis of core-shell catalysts for electrocatalytic applications.
    Kulp C; Chen X; Puschhof A; Schwamborn S; Somsen C; Schuhmann W; Bron M
    Chemphyschem; 2010 Sep; 11(13):2854-61. PubMed ID: 20408156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A universal strategy: Rational construction of noble metal nanoparticle-shell/conducting polymer nanofiber-core electrodes with enhanced electrochemical performances.
    Yang M; Sun LP; Chen B; Liao J; Yuan H; Guan BO
    Nanotechnology; 2020 Oct; 31(44):445602. PubMed ID: 32693391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailored core-shell-shell nanostructures: sandwiching gold nanoparticles between silica cores and tunable silica shells.
    Shi YL; Asefa T
    Langmuir; 2007 Aug; 23(18):9455-62. PubMed ID: 17661498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical Synthesis of Hollow Nanoparticles via Anodic Transformation of Metastable Core-Shell Precursors.
    Park JH; Kang T; Ahn HS
    ChemSusChem; 2024 Apr; ():e202400593. PubMed ID: 38676292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core-Shell Au@SnO
    Pan X; Zheng J; Zhang L; Yi Z
    Inorg Chem; 2019 Aug; 58(16):11164-11171. PubMed ID: 31379163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable, reproducible, and binder-free gold/copper core-shell nanostructures for high-sensitive non-enzymatic glucose detection.
    Siampour H; Abbasian S; Moshaii A; Amirsoleimani AR
    Sci Rep; 2022 Nov; 12(1):18945. PubMed ID: 36347929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Au nanocrystal-directed growth of Au-Cu(2)O core-shell heterostructures with precise morphological control.
    Kuo CH; Hua TE; Huang MH
    J Am Chem Soc; 2009 Dec; 131(49):17871-8. PubMed ID: 19919066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Core-Shell Structured NiFeSn@NiFe (Oxy)Hydroxide Nanospheres from an Electrochemical Strategy for Electrocatalytic Oxygen Evolution Reaction.
    Chen M; Lu S; Fu XZ; Luo JL
    Adv Sci (Weinh); 2020 May; 7(10):1903777. PubMed ID: 32440488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of Cu(core) Pt(shell) nanoparticles as model structures for core-shell electrocatalysts by direct platinum electrodeposition on copper.
    Kulp C; Gillmeister K; Widdra W; Bron M
    Chemphyschem; 2013 Apr; 14(6):1205-10. PubMed ID: 23463710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold-silver core-shell nanoparticle-based impedimetric immunosensor for detection of iron homeostasis biomarker hepcidin.
    Rana S; Bharti A; Singh S; Bhatnagar A; Prabhakar N
    Mikrochim Acta; 2020 Oct; 187(11):626. PubMed ID: 33095336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na
    Mu C; Butenko DS; Odynets IV; Zatovsky ІV; Li J; Han W; Klyui NI
    Dalton Trans; 2020 Jun; 49(24):8226-8237. PubMed ID: 32501461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling core/shell Au/FePt nanoparticle electrocatalysis via changing the core size and shell thickness.
    Sun X; Li D; Guo S; Zhu W; Sun S
    Nanoscale; 2016 Feb; 8(5):2626-31. PubMed ID: 26676367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Core-shell nanostructured catalysts.
    Zhang Q; Lee I; Joo JB; Zaera F; Yin Y
    Acc Chem Res; 2013 Aug; 46(8):1816-24. PubMed ID: 23268644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convenient synthesis of three-dimensional hierarchical CuS@Pd core-shell cauliflowers decorated on nitrogen-doped reduced graphene oxide for non-enzymatic electrochemical sensing of xanthine.
    Cui Y; Li J; Liu M; Tong H; Liu Z; Hu J; Qian D
    Mikrochim Acta; 2020 Oct; 187(11):589. PubMed ID: 33033940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional nanocomposites constructed from Fe3O4-Au nanoparticle cores and a porous silica shell in the solution phase.
    Chen F; Chen Q; Fang S; Sun Y; Chen Z; Xie G; Du Y
    Dalton Trans; 2011 Nov; 40(41):10857-64. PubMed ID: 21637876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic and lattice strain dual tailoring for boosting Pd electrocatalysis in oxygen reduction reaction.
    Zeng Q; Liu D; Liu H; Cui P; Hu C; Chen D; Xu L; Wu X; Yang J
    iScience; 2021 Nov; 24(11):103332. PubMed ID: 34805792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructural Evolution of Au@Pt Core-Shell Nanoparticles under Electrochemical Polarization.
    Hong W; Li CW
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):30977-30986. PubMed ID: 31365226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aqueous phase synthesis of Au-Ag core-shell nanocrystals with tunable shapes and their optical and catalytic properties.
    Tsao YC; Rej S; Chiu CY; Huang MH
    J Am Chem Soc; 2014 Jan; 136(1):396-404. PubMed ID: 24341355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.