These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 3477793)

  • 1. Poly(gamma-glutamylcysteinyl)glycine: its role in cadmium resistance in plant cells.
    Jackson PJ; Unkefer CJ; Doolen JA; Watt K; Robinson NJ
    Proc Natl Acad Sci U S A; 1987 Oct; 84(19):6619-23. PubMed ID: 3477793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of metal binding peptides from cadmium resistant plant cells.
    Robinson NJ; Barton K; Naranjo CM; Sillerud LO; Trewhella J; Watt K; Jackson PJ
    Experientia Suppl; 1987; 52():323-7. PubMed ID: 2889614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of non-protein metal-binding polypeptides (gamma-glutamyl-cysteinyl)n-glycine in selected cadmium-resistant tomato cells.
    Steffens JC; Hunt DF; Williams BG
    J Biol Chem; 1986 Oct; 261(30):13879-82. PubMed ID: 3771509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(gamma-glutamylcysteinyl)glycine Synthesis in Datura innoxia and Binding with Cadmium : Role in Cadmium Tolerance.
    Delhaize E; Jackson PJ; Lujan LD; Robinson NJ
    Plant Physiol; 1989 Feb; 89(2):700-6. PubMed ID: 16666604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precursor-product relationships of Poly(γ-glutamylcysteinyl)glycine biosynthesis in Datura innoxia.
    Berger JM; Jackson PJ; Robinson NJ; Lujan LD; Delhaize E
    Plant Cell Rep; 1989 Mar; 7(8):632-5. PubMed ID: 24240448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin, and metallothioneins.
    Rauser WE
    Cell Biochem Biophys; 1999; 31(1):19-48. PubMed ID: 10505666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and characterization of atypical cadmium-binding polypeptides from Zea mays.
    Bernhard WR; Kägi JH
    Experientia Suppl; 1987; 52():309-15. PubMed ID: 2959521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selection, Isolation, and Characterization of Cadmium-Resistant Datura innoxia Suspension Cultures.
    Jackson PJ; Roth EJ; McClure PR; Naranjo CM
    Plant Physiol; 1984 Aug; 75(4):914-8. PubMed ID: 16663759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-specific synthesis of two metallothioneins and gamma-glutamyl peptides in Candida glabrata.
    Mehra RK; Tarbet EB; Gray WR; Winge DR
    Proc Natl Acad Sci U S A; 1988 Dec; 85(23):8815-9. PubMed ID: 3194392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization.
    Schützendübel A; Polle A
    J Exp Bot; 2002 May; 53(372):1351-65. PubMed ID: 11997381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytochelatins, the heavy metal binding peptides of plants: characterization and sequence determination.
    Grill E
    Experientia Suppl; 1987; 52():317-22. PubMed ID: 2959522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the influence of histidine residues on the metal ion binding ability of the wheat metallothionein γ-Ec-1 domain.
    Tarasava K; Freisinger E
    J Inorg Biochem; 2015 Dec; 153():197-203. PubMed ID: 26299797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal exchange in metallothioneins: a novel structurally significant Cd(5) species in the alpha domain of human metallothionein 1a.
    Rigby Duncan KE; Kirby CW; Stillman MJ
    FEBS J; 2008 May; 275(9):2227-39. PubMed ID: 18429853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the gamma-glutamyl Cu-binding peptide from Schizosaccharomyces pombe.
    Reese RN; Mehra RK; Tarbet EB; Winge DR
    J Biol Chem; 1988 Mar; 263(9):4186-92. PubMed ID: 3346245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acquired cadmium resistance in metallothionein-I/II(-/-) knockout cells: role of the T-type calcium channel Cacnalpha1G in cadmium uptake.
    Leslie EM; Liu J; Klaassen CD; Waalkes MP
    Mol Pharmacol; 2006 Feb; 69(2):629-39. PubMed ID: 16282520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of phytochelatin-cadmium complexes from plant tissue culture using nano-electrospray ionization tandem mass spectrometry and capillary liquid chromatography/electrospray ionization tandem mass spectrometry.
    Yen TY; Villa JA; DeWitt JG
    J Mass Spectrom; 1999 Sep; 34(9):930-41. PubMed ID: 10491589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concentrations of metals and potential metal-binding compounds and speciation of Cd, Zn and Cu in phloem and xylem saps from castor bean plants (Ricinus communis) treated with four levels of cadmium.
    Hazama K; Nagata S; Fujimori T; Yanagisawa S; Yoneyama T
    Physiol Plant; 2015 Jun; 154(2):243-55. PubMed ID: 25403762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary structure and spectroscopic studies of Neurospora copper metallothionein.
    Beltramini M; Lerch K
    Environ Health Perspect; 1986 Mar; 65():21-7. PubMed ID: 3011391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular sequestration of zinc, cadmium and silver in Hebeloma mesophaeum and characterization of its metallothionein genes.
    Sácký J; Leonhardt T; Borovička J; Gryndler M; Briksí A; Kotrba P
    Fungal Genet Biol; 2014 Jun; 67():3-14. PubMed ID: 24674773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfide ions as modulators of metal-thiolate cluster size in a plant metallothionein.
    Huber T; Freisinger E
    Dalton Trans; 2013 Jun; 42(24):8878-89. PubMed ID: 23636452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.