These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34778616)

  • 1. Dynamic Microkinetic Modeling for Heterogeneously Catalyzed Hydrogenation Reactions: a Coverage-Oriented View.
    Liu R
    ACS Omega; 2021 Nov; 6(44):29432-29448. PubMed ID: 34778616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of Cobalt-Catalyzed CO Hydrogenation: 1. Methanation.
    Chen W; Pestman R; Zijlstra B; Filot IAW; Hensen EJM
    ACS Catal; 2017 Dec; 7(12):8050-8060. PubMed ID: 29226009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A self-adjusting platinum surface for acetone hydrogenation.
    Demir B; Kropp T; Rivera-Dones KR; Gilcher EB; Huber GW; Mavrikakis M; Dumesic JA
    Proc Natl Acad Sci U S A; 2020 Feb; 117(7):3446-3450. PubMed ID: 32005709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental and theoretical methods in kinetic studies of heterogeneously catalyzed reactions.
    Reyniers MF; Marin GB
    Annu Rev Chem Biomol Eng; 2014; 5():563-94. PubMed ID: 24910922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micki: A python-based object-oriented microkinetic modeling code.
    Hermes ED; Janes AN; Schmidt JR
    J Chem Phys; 2019 Jul; 151(1):014112. PubMed ID: 31272177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microkinetic Modeling: A Tool for Rational Catalyst Design.
    Motagamwala AH; Dumesic JA
    Chem Rev; 2021 Jan; 121(2):1049-1076. PubMed ID: 33205961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Composition- and Condition-Dependent Kinetics of Homogeneous Ester Hydrogenation by a Mn-Based Catalyst.
    Krieger AM; Kuliaev P; Armstrong Hall FQ; Sun D; Pidko EA
    J Phys Chem C Nanomater Interfaces; 2020 Dec; 124(49):26990-26998. PubMed ID: 33335641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring Heterogeneously Catalyzed Hydrogenation Reactions at Elevated Pressures Using In-Line Flow NMR.
    Tijssen KCH; van Weerdenburg BJA; Zhang H; Janssen JWG; Feiters MC; van Bentum PJM; Kentgens APM
    Anal Chem; 2019 Oct; 91(20):12636-12643. PubMed ID: 31508941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic insight on the hydrogenation of conjugated alkenes with h(2) catalyzed by early main-group metal catalysts.
    Zeng G; Li S
    Inorg Chem; 2010 Apr; 49(7):3361-9. PubMed ID: 20196551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tandem Catalysis of Ammonia Borane Dehydrogenation and Phenylacetylene Hydrogenation Catalyzed by CeO
    Li X; Song L; Gao D; Kang B; Zhao H; Li C; Hu X; Chen G
    Chemistry; 2020 Apr; 26(19):4419-4424. PubMed ID: 32027761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free energy profile and microkinetic modeling of base-catalyzed conjugate addition reaction of nitroalkanes to α,β-unsaturated ketones in polar and apolar solvents.
    Rufino VC; Resende SM; Pliego JR
    J Mol Model; 2018 Jun; 24(7):152. PubMed ID: 29876745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Base-catalyzed hydrogenation: rationalizing the effects of catalyst and substrate structures and solvation.
    Chan B; Radom L
    J Am Chem Soc; 2005 Mar; 127(8):2443-54. PubMed ID: 15724999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DFT simulations and microkinetic modelling of 1-pentyne hydrogenation on Cu20 model catalysts.
    Ma L; Melander M; Weckman T; Lipasti S; Laasonen K; Akola J
    J Mol Graph Model; 2016 Apr; 65():61-70. PubMed ID: 26930446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic Insights into Ethylene Transformations on Ir(111) by Density Functional Calculations and Microkinetic Modeling.
    Shi XR; Kong H; Wang S; Wang H; Qin Z; Wang J
    Chemphyschem; 2017 Apr; 18(8):906-916. PubMed ID: 28195415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interface-tuned selective reductive coupling of nitroarenes to aromatic azo and azoxy: a first-principles-based microkinetics study.
    Zhang L; Shao ZJ; Cao XM; Hu P
    Phys Chem Chem Phys; 2019 Jun; 21(23):12555-12565. PubMed ID: 31149681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and theoretical analysis of asymmetric induction in heterogeneous catalysis: diastereoselective hydrogenation of chiral alpha-hydroxyketones over Pt catalyst.
    Busygin I; Taskinen A; Nieminen V; Toukoniitty E; Stillger T; Leino R; Murzin DY
    J Am Chem Soc; 2009 Apr; 131(12):4449-62. PubMed ID: 19260682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A DFT-based microkinetic study on methanol synthesis from CO
    Zhou Z; Qin B; Li S; Sun Y
    Phys Chem Chem Phys; 2021 Jan; 23(3):1888-1895. PubMed ID: 33458735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Impact of Computational Uncertainties on the Enantioselectivity Predictions: A Microkinetic Modeling of Ketone Transfer Hydrogenation with a Noyori-type Mn-diamine Catalyst.
    Krieger AM; Pidko EA
    ChemCatChem; 2021 Aug; 13(15):3517-3524. PubMed ID: 34589158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A highly active copper catalyst for the hydrogenation of carbon dioxide to formate under ambient conditions.
    Chaudhary K; Trivedi M; Masram DT; Kumar A; Kumar G; Husain A; Rath NP
    Dalton Trans; 2020 Mar; 49(9):2994-3000. PubMed ID: 32083266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.