These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34778792)

  • 1. Harnessing Electrostatic Interactions for Enhanced Conductivity in Metal-Organic Frameworks.
    Zhang AA; Cheng X; He X; Liu W; Deng S; Cao R; Liu TF
    Research (Wash D C); 2021; 2021():9874273. PubMed ID: 34778792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A highly crystalline anthracene-based MOF-74 series featuring electrical conductivity and luminescence.
    Scheurle PI; Mähringer A; Jakowetz AC; Hosseini P; Richter AF; Wittstock G; Medina DD; Bein T
    Nanoscale; 2019 Nov; 11(43):20949-20955. PubMed ID: 31660561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclodextrin Metal-Organic Frameworks and Their Applications.
    Roy I; Stoddart JF
    Acc Chem Res; 2021 Mar; 54(6):1440-1453. PubMed ID: 33523626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge Transport in Zirconium-Based Metal-Organic Frameworks.
    Kung CW; Goswami S; Hod I; Wang TC; Duan J; Farha OK; Hupp JT
    Acc Chem Res; 2020 Jun; 53(6):1187-1195. PubMed ID: 32401008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guest-Induced Emergent Properties in Metal-Organic Frameworks.
    Allendorf MD; Foster ME; Léonard F; Stavila V; Feng PL; Doty FP; Leong K; Ma EY; Johnston SR; Talin AA
    J Phys Chem Lett; 2015 Apr; 6(7):1182-95. PubMed ID: 26262970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microporous Zr-metal-organic frameworks based-nanocomposites for thermoelectric applications.
    Ebrahim A; Ghali M; El-Moneim AA
    Sci Rep; 2024 Jun; 14(1):13067. PubMed ID: 38844480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designable Guest-Molecule Encapsulation in Metal-Organic Frameworks for Proton Conductivity.
    Wang FD; Wang BC; Hao BB; Zhang CX; Wang QL
    Chemistry; 2022 Apr; 28(21):e202103732. PubMed ID: 35106842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge-transfer interactions between fullerenes and a mesoporous tetrathiafulvalene-based metal-organic framework.
    Souto M; Calbo J; Mañas-Valero S; Walsh A; Mínguez Espallargas G
    Beilstein J Nanotechnol; 2019; 10():1883-1893. PubMed ID: 31598454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From a Collapse-Prone, Insulating Ni-MOF-74 Analogue to Crystalline, Porous, and Electrically Conducting PEDOT@MOF Composites.
    Zhang S; Zhang W; Yadav A; Baker J; Saha S
    Inorg Chem; 2023 Nov; 62(46):18999-19005. PubMed ID: 37934947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of intervalence charge transfer interaction between π-stacked mixed valent tetrathiafulvalene ligands on the electrical conductivity of 3D metal-organic frameworks.
    Zhang S; Panda DK; Yadav A; Zhou W; Saha S
    Chem Sci; 2021 Oct; 12(40):13379-13391. PubMed ID: 34777756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-organic Frameworks in Semiconductor Devices.
    Parashar RK; Jash P; Zharnikov M; Mondal PC
    Angew Chem Int Ed Engl; 2024 Apr; 63(15):e202317413. PubMed ID: 38252076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boosting the Optoelectronic Performance by Regulating Exciton Behaviors in a Porous Semiconductive Metal-Organic Framework.
    Liang C; Cheng L; Zhang S; Yang S; Liu W; Xie J; Li MD; Chai Z; Wang Y; Wang S
    J Am Chem Soc; 2022 Feb; 144(5):2189-2196. PubMed ID: 35073062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical conductivity through π-π stacking in a two-dimensional porous gallium catecholate metal-organic framework.
    Skorupskii G; Chanteux G; Le KN; Stassen I; Hendon CH; Dincă M
    Ann N Y Acad Sci; 2022 Dec; 1518(1):226-230. PubMed ID: 36183322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Comparison of Two Isoreticular Metal-Organic Frameworks with Cationic and Neutral Skeletons: Stability, Mechanism, and Catalytic Activity.
    Huang G; Yang L; Yin Q; Fang ZB; Hu XJ; Zhang AA; Jiang J; Liu TF; Cao R
    Angew Chem Int Ed Engl; 2020 Mar; 59(11):4385-4390. PubMed ID: 31943675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable electrical conductivity in metal-organic framework thin-film devices.
    Talin AA; Centrone A; Ford AC; Foster ME; Stavila V; Haney P; Kinney RA; Szalai V; El Gabaly F; Yoon HP; Léonard F; Allendorf MD
    Science; 2014 Jan; 343(6166):66-9. PubMed ID: 24310609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks.
    Horike S; Umeyama D; Kitagawa S
    Acc Chem Res; 2013 Nov; 46(11):2376-84. PubMed ID: 23730917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maximizing the Potential of Electrically Conductive MOFs.
    Pham HTB; Choi JY; Stodolka M; Park J
    Acc Chem Res; 2024 Jan; ():. PubMed ID: 38294773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchically Porous MOFs Synthesized by Soft-Template Strategies.
    Li K; Yang J; Gu J
    Acc Chem Res; 2022 Aug; 55(16):2235-2247. PubMed ID: 35904471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-organic frameworks with functional pores for recognition of small molecules.
    Chen B; Xiang S; Qian G
    Acc Chem Res; 2010 Aug; 43(8):1115-24. PubMed ID: 20450174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophobic Metal-Organic Frameworks and Derived Composites for Microelectronics Applications.
    Thanasekaran P; Su CH; Liu YH; Lu KL
    Chemistry; 2021 Dec; 27(67):16543-16563. PubMed ID: 33890702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.