BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 34779408)

  • 21. m
    Tang B; Yang Y; Kang M; Wang Y; Wang Y; Bi Y; He S; Shimamoto F
    Mol Cancer; 2020 Jan; 19(1):3. PubMed ID: 31906946
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aspartate β-hydroxylase promotes pancreatic ductal adenocarcinoma metastasis through activation of SRC signaling pathway.
    Ogawa K; Lin Q; Li L; Bai X; Chen X; Chen H; Kong R; Wang Y; Zhu H; He F; Xu Q; Liu L; Li M; Zhang S; Nagaoka K; Carlson R; Safran H; Charpentier K; Sun B; Wands J; Dong X
    J Hematol Oncol; 2019 Dec; 12(1):144. PubMed ID: 31888763
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Macrophage-derived exosomal microRNA-501-3p promotes progression of pancreatic ductal adenocarcinoma through the TGFBR3-mediated TGF-β signaling pathway.
    Yin Z; Ma T; Huang B; Lin L; Zhou Y; Yan J; Zou Y; Chen S
    J Exp Clin Cancer Res; 2019 Jul; 38(1):310. PubMed ID: 31307515
    [TBL] [Abstract][Full Text] [Related]  

  • 24. GOLPH2, a gene downstream of ras signaling, promotes the progression of pancreatic ductal adenocarcinoma.
    Duan J; Li X; Huang S; Zeng Y; He Y; Liu H; Lin D; Lu D; Zheng M
    Mol Med Rep; 2018 Mar; 17(3):4187-4194. PubMed ID: 29344673
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Upregulated circular RNA circ_0007534 indicates an unfavorable prognosis in pancreatic ductal adenocarcinoma and regulates cell proliferation, apoptosis, and invasion by sponging miR-625 and miR-892b.
    Hao L; Rong W; Bai L; Cui H; Zhang S; Li Y; Chen D; Meng X
    J Cell Biochem; 2019 Mar; 120(3):3780-3789. PubMed ID: 30382592
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Upregulation of amplified in breast cancer 1 contributes to pancreatic ductal adenocarcinoma progression and vulnerability to blockage of hedgehog activation.
    Li L; Bao J; Wang H; Lei JH; Peng C; Zeng J; Hao W; Zhang X; Xu X; Yu C; Deng CX; Chen Q
    Theranostics; 2021; 11(4):1672-1689. PubMed ID: 33408774
    [No Abstract]   [Full Text] [Related]  

  • 27. The phosphatase PHLPP1 regulates Akt2, promotes pancreatic cancer cell death, and inhibits tumor formation.
    Nitsche C; Edderkaoui M; Moore RM; Eibl G; Kasahara N; Treger J; Grippo PJ; Mayerle J; Lerch MM; Gukovskaya AS
    Gastroenterology; 2012 Feb; 142(2):377-87.e1-5. PubMed ID: 22044669
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aberrant NFATc1 signaling counteracts TGFβ-mediated growth arrest and apoptosis induction in pancreatic cancer progression.
    Hasselluhn MC; Schmidt GE; Ellenrieder V; Johnsen SA; Hessmann E
    Cell Death Dis; 2019 Jun; 10(6):446. PubMed ID: 31171768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nuclear expression of Y-box binding protein-1 is associated with poor prognosis in patients with pancreatic cancer and its knockdown inhibits tumor growth and metastasis in mice tumor models.
    Shinkai K; Nakano K; Cui L; Mizuuchi Y; Onishi H; Oda Y; Obika S; Tanaka M; Katano M
    Int J Cancer; 2016 Jul; 139(2):433-45. PubMed ID: 26939718
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MiRNA-615-5p functions as a tumor suppressor in pancreatic ductal adenocarcinoma by targeting AKT2.
    Sun Y; Zhang T; Wang C; Jin X; Jia C; Yu S; Chen J
    PLoS One; 2015; 10(4):e0119783. PubMed ID: 25856297
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Loss of Somatostatin Receptor Subtype 2 Promotes Growth of KRAS-Induced Pancreatic Tumors in Mice by Activating PI3K Signaling and Overexpression of CXCL16.
    Chalabi-Dchar M; Cassant-Sourdy S; Duluc C; Fanjul M; Lulka H; Samain R; Roche C; Breibach F; Delisle MB; Poupot M; Dufresne M; Shimaoka T; Yonehara S; Mathonnet M; Pyronnet S; Bousquet C
    Gastroenterology; 2015 Jun; 148(7):1452-65. PubMed ID: 25683115
    [TBL] [Abstract][Full Text] [Related]  

  • 32. lncRNA
    Li N; Yang G; Luo L; Ling L; Wang X; Shi L; Lan J; Jia X; Zhang Q; Long Z; Liu J; Hu W; He Z; Liu H; Liu W; Zheng G
    Clin Cancer Res; 2020 Apr; 26(7):1736-1748. PubMed ID: 31831555
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A potential prognostic marker and therapeutic target: SPOCK1 promotes the proliferation, metastasis, and apoptosis of pancreatic ductal adenocarcinoma cells.
    Li J; Ke J; Fang J; Chen JP
    J Cell Biochem; 2020 Jan; 121(1):743-754. PubMed ID: 31478239
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Upregulated long noncoding RNA LINC01296 indicates a dismal prognosis for pancreatic ductal adenocarcinoma and promotes cell metastatic properties by affecting EMT.
    Yuan Q; Zhang Y; Feng L; Jiang Y
    J Cell Biochem; 2019 Jan; 120(1):552-561. PubMed ID: 30203487
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Primate-specific miRNA-637 inhibited tumorigenesis in human pancreatic ductal adenocarcinoma cells by suppressing Akt1 expression.
    Xu RL; He W; Tang J; Guo W; Zhuang P; Wang CQ; Fu WM; Zhang JF
    Exp Cell Res; 2018 Feb; 363(2):310-314. PubMed ID: 29366808
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeting of surface alpha-enolase inhibits the invasiveness of pancreatic cancer cells.
    Principe M; Ceruti P; Shih NY; Chattaragada MS; Rolla S; Conti L; Bestagno M; Zentilin L; Yang SH; Migliorini P; Cappello P; Burrone O; Novelli F
    Oncotarget; 2015 May; 6(13):11098-113. PubMed ID: 25860938
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Silencing of MUC20 suppresses the malignant character of pancreatic ductal adenocarcinoma cells through inhibition of the HGF/MET pathway.
    Chen ST; Kuo TC; Liao YY; Lin MC; Tien YW; Huang MC
    Oncogene; 2018 Nov; 37(46):6041-6053. PubMed ID: 29993037
    [TBL] [Abstract][Full Text] [Related]  

  • 38. circNFIB1 inhibits lymphangiogenesis and lymphatic metastasis via the miR-486-5p/PIK3R1/VEGF-C axis in pancreatic cancer.
    Kong Y; Li Y; Luo Y; Zhu J; Zheng H; Gao B; Guo X; Li Z; Chen R; Chen C
    Mol Cancer; 2020 May; 19(1):82. PubMed ID: 32366257
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MYEOV increases HES1 expression and promotes pancreatic cancer progression by enhancing SOX9 transactivity.
    Liang E; Lu Y; Shi Y; Zhou Q; Zhi F
    Oncogene; 2020 Oct; 39(41):6437-6450. PubMed ID: 32879444
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A pharmacogenomic analysis using L1000CDS
    Choi EA; Choi YS; Lee EJ; Singh SR; Kim SC; Chang S
    Cancer Lett; 2019 Nov; 465():82-93. PubMed ID: 31404615
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.