BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 34779440)

  • 1. Shotgun Proteomics Sample Processing Automated by an Open-Source Lab Robot.
    Han Y; Thomas CT; Wennersten SA; Lau E; Lam MPY
    J Vis Exp; 2021 Oct; (176):. PubMed ID: 34779440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adapting a Low-Cost and Open-Source Commercial Pipetting Robot for Nanoliter Liquid Handling.
    Councill EEAW; Axtell NB; Truong T; Liang Y; Aposhian AL; Webber KGI; Zhu Y; Cong Y; Carson RH; Kelly RT
    SLAS Technol; 2021 Jun; 26(3):311-319. PubMed ID: 33213279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MassSpecPreppy-An end-to-end solution for automated protein concentration determination and flexible sample digestion for proteomics applications.
    Reder A; Hentschker C; Steil L; Gesell Salazar M; Hammer E; Dhople VM; Sura T; Lissner U; Wolfgramm H; Dittmar D; Harms M; Surmann K; Völker U; Michalik S
    Proteomics; 2024 May; 24(9):e2300294. PubMed ID: 37772677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automation of yeast spot assays using an affordable liquid handling robot.
    Taguchi S; Suda Y; Irie K; Ozaki H
    SLAS Technol; 2023 Apr; 28(2):55-62. PubMed ID: 36503082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Reproducible Automated Proteomics Sample Preparation Workflow for Quantitative Mass Spectrometry.
    Fu Q; Kowalski MP; Mastali M; Parker SJ; Sobhani K; van den Broek I; Hunter CL; Van Eyk JE
    J Proteome Res; 2018 Jan; 17(1):420-428. PubMed ID: 29083196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Open-Source Modular Framework for Automated Pipetting and Imaging Applications.
    Ouyang W; Bowman RW; Wang H; Bumke KE; Collins JT; Spjuth O; Carreras-Puigvert J; Diederich B
    Adv Biol (Weinh); 2022 Apr; 6(4):e2101063. PubMed ID: 34693668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated sample preparation with SP3 for low-input clinical proteomics.
    Müller T; Kalxdorf M; Longuespée R; Kazdal DN; Stenzinger A; Krijgsveld J
    Mol Syst Biol; 2020 Jan; 16(1):e9111. PubMed ID: 32129943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refinement of paramagnetic bead-based digestion protocol for automatic sample preparation using an artificial neural network.
    Ciordia S; Santos FM; Dias JML; Lamas JR; Paradela A; Alvarez-Sola G; Ávila MA; Corrales F
    Talanta; 2024 Jul; 274():125988. PubMed ID: 38569368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Plasma Sample Preparation for Mass Spectrometry using an Automated Workstation.
    Fu Q; Johnson CW; Wijayawardena BK; Kowalski MP; Kheradmand M; Van Eyk JE
    J Vis Exp; 2020 Apr; (158):. PubMed ID: 32391810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reducing the cost of semi-automated in-gel tryptic digestion and GeLC sample preparation for high-throughput proteomics.
    Ruelcke JE; Loo D; Hill MM
    J Proteomics; 2016 Oct; 149():3-6. PubMed ID: 27084685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated proteomic sample preparation: The key component for high throughput and quantitative mass spectrometry analysis.
    Fu Q; Murray CI; Karpov OA; Van Eyk JE
    Mass Spectrom Rev; 2023 Mar; 42(2):873-886. PubMed ID: 34786750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fully Automated Workflow for Integrated Sample Digestion and Evotip Loading Enabling High-Throughput Clinical Proteomics.
    Kverneland AH; Harking F; Vej-Nielsen JM; Huusfeldt M; Bekker-Jensen DB; Svane IM; Bache N; Olsen JV
    Mol Cell Proteomics; 2024 May; 23(7):100790. PubMed ID: 38777088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unlocking the efficiency of genomics laboratories with robotic liquid-handling.
    Tegally H; San JE; Giandhari J; de Oliveira T
    BMC Genomics; 2020 Oct; 21(1):729. PubMed ID: 33081689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Workflow improvement and impact of the new Beckman Coulter LH 1500 high throughput automated hematology workcell.
    La Porta AD; Bowden AS; Barr S
    Lab Hematol; 2004; 10(2):95-101. PubMed ID: 15224765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A generic template for automated bioanalytical ligand-binding assays using modular robotic scripts in support of discovery biotherapeutic programs.
    Duo J; Dong H; DeSilva B; Zhang YJ
    Bioanalysis; 2013 Jul; 5(14):1735-50. PubMed ID: 23862706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Piston-driven automated liquid handlers.
    Schuster J; Kamuju V; Zhou J; Mathaes R
    SLAS Technol; 2024 Jun; 29(3):100128. PubMed ID: 38508238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated "Cells-To-Peptides" Sample Preparation Workflow for High-Throughput, Quantitative Proteomic Assays of Microbes.
    Chen Y; Guenther JM; Gin JW; Chan LJG; Costello Z; Ogorzalek TL; Tran HM; Blake-Hedges JM; Keasling JD; Adams PD; García Martín H; Hillson NJ; Petzold CJ
    J Proteome Res; 2019 Oct; 18(10):3752-3761. PubMed ID: 31436101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automation for Life Science Laboratories.
    Thurow K
    Adv Biochem Eng Biotechnol; 2022; 182():3-22. PubMed ID: 34291297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated Sample Preparation for Mass Spectrometry-Based Clinical Proteomics.
    Müller T; Cremonini MA; Kliewer G; Krijgsveld J
    Methods Mol Biol; 2023; 2718():181-211. PubMed ID: 37665461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Workflow analysis comparing manual and automated specimen processing for mass spectrometry-based vitamin D testing.
    Tacker DH; Topardo J; Mahaffey C; Perrotta PL
    Lab Med; 2014; 45(4):361-7. PubMed ID: 25316669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.