BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 34779473)

  • 1. Coordination environment engineering on nickel single-atom catalysts for CO
    Ma M; Li F; Tang Q
    Nanoscale; 2021 Nov; 13(45):19133-19143. PubMed ID: 34779473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-Atom Metal and Nonmetal Site Catalyst on a Single Nickel Atom Supported on a Hybridized BCN Nanosheet for Electrochemical CO
    Zhang Y; Liu T; Wang X; Dang Q; Zhang M; Zhang S; Li X; Tang S; Jiang J
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):9073-9083. PubMed ID: 35138796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational Fabrication of Low-Coordinate Single-Atom Ni Electrocatalysts by MOFs for Highly Selective CO
    Zhang Y; Jiao L; Yang W; Xie C; Jiang HL
    Angew Chem Int Ed Engl; 2021 Mar; 60(14):7607-7611. PubMed ID: 33432715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A supported Ni
    Shen J; Pan Z
    J Colloid Interface Sci; 2024 Jun; 673():486-495. PubMed ID: 38879990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Customizing pyridinic nitrogen coordination in Ni-N-C for electrocatalytic CO
    Ai Y; Zhang K; Li J; Du X; Wang Y; Wu L; Zhang Z
    Nanotechnology; 2024 Jul; ():. PubMed ID: 38959865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the Coordination Structures of Transition Metals on Nitrogen-Doped Carbon Nanotubes for Electrochemical CO
    Cao Y; Meng Y; Wu Y; Shen Z; Xia Q; Huang H; Lang JP; Gu H; Wang Y; Li X
    Inorg Chem; 2022 Nov; 61(47):18957-18969. PubMed ID: 36374189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomically Dispersed Dual-Metal Site Catalysts for Enhanced CO
    Li Y; Shan W; Zachman MJ; Wang M; Hwang S; Tabassum H; Yang J; Yang X; Karakalos S; Feng Z; Wang G; Wu G
    Angew Chem Int Ed Engl; 2022 Jul; 61(28):e202205632. PubMed ID: 35470950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin of the N-coordinated single-atom Ni sites in heterogeneous electrocatalysts for CO
    Wang Y; You L; Zhou K
    Chem Sci; 2021 Nov; 12(42):14065-14073. PubMed ID: 34760190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single Ni active sites with a nitrogen and phosphorus dual coordination for an efficient CO
    Yang X; Cheng J; Yang X; Xu Y; Sun W; Liu N; Zhou J
    Nanoscale; 2022 May; 14(18):6846-6853. PubMed ID: 35441646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nickel Single Atom Density-Dependent CO
    Zhang F; Zhang H; Jia Z; Chen S; Li S; Li J; Zan WY; Wang Q; Li Y
    Small; 2024 Apr; 20(16):e2308080. PubMed ID: 38032165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-Coordinated Phthalocyanines as Platform Molecules for Understanding Isolated Metal Sites in the Electrochemical Reduction of CO
    Chang Q; Liu Y; Lee JH; Ologunagba D; Hwang S; Xie Z; Kattel S; Lee JH; Chen JG
    J Am Chem Soc; 2022 Sep; 144(35):16131-16138. PubMed ID: 36007154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge-orbital synergistic engineering of TM@Ti
    Peng J; Shi Z; Jiang J; Zhang P; Hsu JP; Li N
    Mater Horiz; 2023 Oct; 10(10):4278-4292. PubMed ID: 37439186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boosting photo-assisted efficient electrochemical CO
    Dutta S; Pati SK
    Phys Chem Chem Phys; 2023 Jun; 25(23):15788-15797. PubMed ID: 37254706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulating the Coordination Environment of MOF-Templated Single-Atom Nickel Electrocatalysts for Boosting CO
    Gong YN; Jiao L; Qian Y; Pan CY; Zheng L; Cai X; Liu B; Yu SH; Jiang HL
    Angew Chem Int Ed Engl; 2020 Feb; 59(7):2705-2709. PubMed ID: 31821685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The atomic-level regulation of single-atom site catalysts for the electrochemical CO
    Qu Q; Ji S; Chen Y; Wang D; Li Y
    Chem Sci; 2021 Feb; 12(12):4201-4215. PubMed ID: 34168747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational screening of high activity and selectivity of CO
    Ji S; Li Y; Zhang Y; Lin W
    Phys Chem Chem Phys; 2023 Sep; 25(35):24022-24030. PubMed ID: 37650553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of nickel-based electrocatalyst size on electrochemical carbon dioxide reduction: A density functional theory study.
    Wang F; Meng Y; Chen X; Zhang L; Li G; Shen Z; Wang Y; Cao Y
    J Colloid Interface Sci; 2022 Jun; 615():587-596. PubMed ID: 35152078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Descriptor-Based Design Principle for Two-Dimensional Single-Atom Catalysts: Carbon Dioxide Electroreduction.
    Yuan H; Li Z; Zeng XC; Yang J
    J Phys Chem Lett; 2020 May; 11(9):3481-3487. PubMed ID: 32298119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Atom Catalysis toward Efficient CO
    Su X; Yang XF; Huang Y; Liu B; Zhang T
    Acc Chem Res; 2019 Mar; 52(3):656-664. PubMed ID: 30512920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning Carbon Dioxide Reduction Reaction Selectivity of Bi Single-Atom Electrocatalysts with Controlled Coordination Environments.
    Santra S; Streibel V; Wagner LI; Cheng N; Ding P; Zhou G; Sirotti E; Kisslinger R; Rieth T; Zhang S; Sharp ID
    ChemSusChem; 2024 May; 17(10):e202301452. PubMed ID: 38224562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.