These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 34779672)
1. Analysis of crossover designs for longitudinal binary data with ignorable and nonignorable dropout. Wang X; Chinchilli VM Stat Methods Med Res; 2022 Jan; 31(1):119-138. PubMed ID: 34779672 [TBL] [Abstract][Full Text] [Related]
2. Analysis of crossover designs with nonignorable dropout. Wang X; Chinchilli VM Stat Med; 2021 Jan; 40(1):64-84. PubMed ID: 33012039 [TBL] [Abstract][Full Text] [Related]
3. A Two-Step Approach for Analysis of Nonignorable Missing Outcomes in Longitudinal Regression: an Application to Upstate KIDS Study. Liu D; Yeung EH; McLain AC; Xie Y; Buck Louis GM; Sundaram R Paediatr Perinat Epidemiol; 2017 Sep; 31(5):468-478. PubMed ID: 28767145 [TBL] [Abstract][Full Text] [Related]
4. Bayesian pattern-mixture models for dropout and intermittently missing data in longitudinal data analysis. Blozis SA Behav Res Methods; 2024 Mar; 56(3):1953-1967. PubMed ID: 37221346 [TBL] [Abstract][Full Text] [Related]
5. Markov transition models for binary repeated measures with ignorable and nonignorable missing values. Xiaowei Yang ; Shoptaw S; Kun Nie ; Juanmei Liu ; Belin TR Stat Methods Med Res; 2007 Aug; 16(4):347-64. PubMed ID: 17715161 [TBL] [Abstract][Full Text] [Related]
6. Semi-parametric methods of handling missing data in mortal cohorts under non-ignorable missingness. Wen L; Seaman SR Biometrics; 2018 Dec; 74(4):1427-1437. PubMed ID: 29772074 [TBL] [Abstract][Full Text] [Related]
7. Multivariate linear mixed models with censored and nonignorable missing outcomes, with application to AIDS studies. Lin TI; Wang WL Biom J; 2022 Oct; 64(7):1325-1339. PubMed ID: 35723051 [TBL] [Abstract][Full Text] [Related]
8. Pseudo-likelihood methods for longitudinal binary data with non-ignorable missing responses and covariates. Parzen M; Lipsitz SR; Fitzmaurice GM; Ibrahim JG; Troxel A Stat Med; 2006 Aug; 25(16):2784-96. PubMed ID: 16345018 [TBL] [Abstract][Full Text] [Related]
9. A bivariate pseudolikelihood for incomplete longitudinal binary data with nonignorable nonmonotone missingness. Sinha SK; Troxel AB; Lipsitz SR; Sinha D; Fitzmaurice GM; Molenberghs G; Ibrahim JG Biometrics; 2011 Sep; 67(3):1119-26. PubMed ID: 21155748 [TBL] [Abstract][Full Text] [Related]
10. A Bayesian natural cubic B-spline varying coefficient method for non-ignorable dropout. Moore CM; MaWhinney S; Carlson NE; Kreidler S BMC Med Res Methodol; 2020 Oct; 20(1):250. PubMed ID: 33028226 [TBL] [Abstract][Full Text] [Related]
11. Measuring the Impact of Nonignorable Missingness Using the R Package isni. Xie H; Gao W; Xing B; Heitjan DF; Hedeker D; Yuan C Comput Methods Programs Biomed; 2018 Oct; 164():207-220. PubMed ID: 30195428 [TBL] [Abstract][Full Text] [Related]
12. Controlled pattern imputation for sensitivity analysis of longitudinal binary and ordinal outcomes with nonignorable dropout. Tang Y Stat Med; 2018 Apr; 37(9):1467-1481. PubMed ID: 29333672 [TBL] [Abstract][Full Text] [Related]
13. Bayesian informative dropout model for longitudinal binary data with random effects using conditional and joint modeling approaches. Chan JS Biom J; 2016 May; 58(3):549-69. PubMed ID: 26467236 [TBL] [Abstract][Full Text] [Related]
14. Bayesian inference from incomplete longitudinal data: a simple method to quantify sensitivity to nonignorable dropout. Xie H Stat Med; 2009 Sep; 28(22):2725-47. PubMed ID: 19572257 [TBL] [Abstract][Full Text] [Related]
15. A varying-coefficient method for analyzing longitudinal clinical trials data with nonignorable dropout. Forster JE; MaWhinney S; Ball EL; Fairclough D Contemp Clin Trials; 2012 Mar; 33(2):378-85. PubMed ID: 22101223 [TBL] [Abstract][Full Text] [Related]
16. Estimating treatment effects under untestable assumptions with nonignorable missing data. Gomes M; Kenward MG; Grieve R; Carpenter J Stat Med; 2020 May; 39(11):1658-1674. PubMed ID: 32059073 [TBL] [Abstract][Full Text] [Related]
17. Estimating the effect of multiple imputation on incomplete longitudinal data with application to a randomized clinical study. Fong DY; Rai SN; Lam KS J Biopharm Stat; 2013; 23(5):1004-22. PubMed ID: 23957512 [TBL] [Abstract][Full Text] [Related]
18. Mixtures of varying coefficient models for longitudinal data with discrete or continuous nonignorable dropout. Hogan JW; Lin X; Herman B Biometrics; 2004 Dec; 60(4):854-64. PubMed ID: 15606405 [TBL] [Abstract][Full Text] [Related]
19. A weighted combination of pseudo-likelihood estimators for longitudinal binary data subject to non-ignorable non-monotone missingness. Troxel AB; Lipsitz SR; Fitzmaurice GM; Ibrahim JG; Sinha D; Molenberghs G Stat Med; 2010 Jun; 29(14):1511-21. PubMed ID: 20205269 [TBL] [Abstract][Full Text] [Related]
20. Marginalized transition shared random effects models for longitudinal binary data with nonignorable dropout. Lee M; Lee K; Lee J Biom J; 2014 Mar; 56(2):230-42. PubMed ID: 24430985 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]