These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 34779722)

  • 1. Paired corticospinal-motoneuronal stimulation and exercise after spinal cord injury.
    Jo HJ; Richardson MSA; Oudega M; Perez MA
    J Spinal Cord Med; 2021; 44(sup1):S23-S27. PubMed ID: 34779722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased paired stimuli enhance corticospinal-motoneuronal plasticity in humans with spinal cord injury.
    Grover FM; Chen B; Perez MA
    J Neurophysiol; 2023 Jun; 129(6):1414-1422. PubMed ID: 36752493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potentiating paired corticospinal-motoneuronal plasticity after spinal cord injury.
    Bunday KL; Urbin MA; Perez MA
    Brain Stimul; 2018; 11(5):1083-1092. PubMed ID: 29848448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spike-timing-dependent plasticity in lower-limb motoneurons after human spinal cord injury.
    Urbin MA; Ozdemir RA; Tazoe T; Perez MA
    J Neurophysiol; 2017 Oct; 118(4):2171-2180. PubMed ID: 28468994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Potential of Corticospinal-Motoneuronal Plasticity for Recovery after Spinal Cord Injury.
    Jo HJ; Richardson MSA; Oudega M; Perez MA
    Curr Phys Med Rehabil Rep; 2020 Sep; 8(3):293-298. PubMed ID: 33777502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corticospinal-motor neuronal plasticity promotes exercise-mediated recovery in humans with spinal cord injury.
    Jo HJ; Perez MA
    Brain; 2020 May; 143(5):1368-1382. PubMed ID: 32355959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multisite Hebbian Plasticity Restores Function in Humans with Spinal Cord Injury.
    Jo HJ; Kizziar E; Sangari S; Chen D; Kessler A; Kim K; Anschel A; Heinemann AW; Mensh BD; Awadalla S; Lieber RL; Oudega M; Perez MA
    Ann Neurol; 2023 Jun; 93(6):1198-1213. PubMed ID: 36843340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted-Plasticity in the Corticospinal Tract After Human Spinal Cord Injury.
    Christiansen L; Perez MA
    Neurotherapeutics; 2018 Jul; 15(3):618-627. PubMed ID: 29946981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute intermittent hypoxia boosts spinal plasticity in humans with tetraplegia.
    Christiansen L; Chen B; Lei Y; Urbin MA; Richardson MSA; Oudega M; Sandhu M; Rymer WZ; Trumbower RD; Mitchell GS; Perez MA
    Exp Neurol; 2021 Jan; 335():113483. PubMed ID: 32987000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of paired corticospinal-motoneuronal stimulation on maximal voluntary elbow flexion in cervical spinal cord injury: an experimental study.
    Dongés SC; Boswell-Ruys CL; Butler JE; Taylor JL
    Spinal Cord; 2019 Sep; 57(9):796-804. PubMed ID: 31086274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corticospinal Motor Circuit Plasticity After Spinal Cord Injury: Harnessing Neuroplasticity to Improve Functional Outcomes.
    Kazim SF; Bowers CA; Cole CD; Varela S; Karimov Z; Martinez E; Ogulnick JV; Schmidt MH
    Mol Neurobiol; 2021 Nov; 58(11):5494-5516. PubMed ID: 34341881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined motor cortex and spinal cord neuromodulation promotes corticospinal system functional and structural plasticity and motor function after injury.
    Song W; Amer A; Ryan D; Martin JH
    Exp Neurol; 2016 Mar; 277():46-57. PubMed ID: 26708732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motor recovery after spinal cord injury enhanced by strengthening corticospinal synaptic transmission.
    Bunday KL; Perez MA
    Curr Biol; 2012 Dec; 22(24):2355-61. PubMed ID: 23200989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corticospinal recruitment of spinal motor neurons in human stroke survivors.
    Urbin MA; Collinger JL; Wittenberg GF
    J Physiol; 2021 Sep; 599(18):4357-4373. PubMed ID: 34021605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of N-methyl-d-aspartate receptors in plasticity induced by paired corticospinal-motoneuronal stimulation in humans.
    Dongés SC; D'Amico JM; Butler JE; Taylor JL
    J Neurophysiol; 2018 Feb; 119(2):652-661. PubMed ID: 29118196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paired corticospinal-motoneuronal stimulation increases maximal voluntary activation of human adductor pollicis.
    D'Amico JM; Dongés SC; Taylor JL
    J Neurophysiol; 2018 Jan; 119(1):369-376. PubMed ID: 29046429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. More conditioning stimuli enhance synaptic plasticity in the human spinal cord.
    Fitzpatrick SC; Luu BL; Butler JE; Taylor JL
    Clin Neurophysiol; 2016 Jan; 127(1):724-731. PubMed ID: 25912336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-intensity, low-frequency repetitive transcranial magnetic stimulation enhances excitability of the human corticospinal pathway.
    D'Amico JM; Dongés SC; Taylor JL
    J Neurophysiol; 2020 May; 123(5):1969-1978. PubMed ID: 32292098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuroplasticity of spinal cord injury and repair.
    Martin JH
    Handb Clin Neurol; 2022; 184():317-330. PubMed ID: 35034745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct patterns of spasticity and corticospinal connectivity following complete spinal cord injury.
    Sangari S; Kirshblum S; Guest JD; Oudega M; Perez MA
    J Physiol; 2021 Oct; 599(19):4441-4454. PubMed ID: 34107068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.